Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1982 Mar;46(1):95–127. doi: 10.1128/mr.46.1.95-127.1982

Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms.

R Lal, D M Saxena
PMCID: PMC373213  PMID: 6178010

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLAN J. Loss of biological efficiency of cattle-dipping wash containing benzene hexachloride. Nature. 1955 Jun 25;175(4469):1131–1132. doi: 10.1038/1751131b0. [DOI] [PubMed] [Google Scholar]
  2. Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol. 1965;7:35–80. doi: 10.1016/s0065-2164(08)70383-6. [DOI] [PubMed] [Google Scholar]
  3. Anderson J. P., Lichtenstein E. P., Whittingham W. F. Effect of Mucor alternans on the persistence of DDT and Dieldrin in culture and in soil. J Econ Entomol. 1970 Oct;63(5):1595–1599. doi: 10.1093/jee/63.5.1595. [DOI] [PubMed] [Google Scholar]
  4. Andrade P. S., Jr, Wheeler W. B. Biodegradation of mirex by sewage sludge organisms. Bull Environ Contam Toxicol. 1974 May;11(5):415–416. doi: 10.1007/BF01685296. [DOI] [PubMed] [Google Scholar]
  5. BRADBURY F. R., NIELD P., NEWMAN J. F. Amount of gamma-benzene hexachloride picked up by resistant houseflies bred on a medium containing benzene hexachloride. Nature. 1953 Dec 5;172(4388):1052–1052. doi: 10.1038/1721052a0. [DOI] [PubMed] [Google Scholar]
  6. Batterton J. C., Boush G. M., Matsumura F. Growth response of blue-green algae to aldrin, dieldrin, endrin and their metabolites. Bull Environ Contam Toxicol. 1971 Nov-Dec;6(6):589–594. doi: 10.1007/BF01796871. [DOI] [PubMed] [Google Scholar]
  7. Bevenue A. The "bioconcentration" aspects of DDT in the environment. Residue Rev. 1976;61:37–112. doi: 10.1007/978-1-4613-9401-3_3. [DOI] [PubMed] [Google Scholar]
  8. Bixby M. W., Boush G. M., Matsumura F. Degradation of dieldrin to carbon dioxide by a soil fungus Trichoderma koningi. Bull Environ Contam Toxicol. 1971 Nov-Dec;6(6):491–494. doi: 10.1007/BF01796853. [DOI] [PubMed] [Google Scholar]
  9. Blanke R. V., Fariss M. W., Guzelian P. S., Paterson A. R., Smith D. E. Identification of a reduced form of chlordecone (Kepone) in human stool. Bull Environ Contam Toxicol. 1978 Dec;20(6):782–785. doi: 10.1007/BF01683600. [DOI] [PubMed] [Google Scholar]
  10. Borghi H., Puiseux-Dao S., Bonotto S., Hoursiangou-Neubrun D. The effects of lindane on Acetabularia mediterranea. Protoplasma. 1973;78(1):99–112. doi: 10.1007/BF01281525. [DOI] [PubMed] [Google Scholar]
  11. Borsetti A. P., Roach J. A. Identification of kepone alteration products in soil and mullet. Bull Environ Contam Toxicol. 1978 Aug;20(2):241–247. doi: 10.1007/BF01683515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bowes G. W., Gee R. W. Inhibition of photosynthetic electron transport by DDT and DDE. J Bioenerg. 1971 Feb;2(1):47–60. doi: 10.1007/BF01521323. [DOI] [PubMed] [Google Scholar]
  13. Bowes G. W. Uptake and Metabolism of 2,2-bis-(p-Chlorophenyl-1,1,1-trichloroethane (DDT) by Marine Phytoplankton and Its Effects on Growth and Chloroplast Electron Transport. Plant Physiol. 1972 Feb;49(2):172–176. doi: 10.1104/pp.49.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carlson D. A., Konyha K. D., Wheeler W. B., Marshall G. P., Zaylskie R. G. Mirex in the environment: its degradation to kepone and related compounds. Science. 1976 Nov 26;194(4268):939–941. doi: 10.1126/science.62396. [DOI] [PubMed] [Google Scholar]
  15. Carter F. L., Stringer C. A. Residues and degradation products of technical heptachlor in various soil types. J Econ Entomol. 1970 Apr;63(2):625–628. doi: 10.1093/jee/63.2.625. [DOI] [PubMed] [Google Scholar]
  16. Chacke C. I., Lockwood J. L., Zabik M. Chlorinated hydrocarbon pesticides: degradation by microbes. Science. 1966 Nov 18;154(3751):893–895. doi: 10.1126/science.154.3751.893. [DOI] [PubMed] [Google Scholar]
  17. Chacko C. I., Lockwood J. L. Accumulation of DDT and dieldrin by microorganisms. Can J Microbiol. 1967 Aug;13(8):1123–1126. doi: 10.1139/m67-153. [DOI] [PubMed] [Google Scholar]
  18. Clark J. M., Matsumura F. Metabolism of toxaphene by aquatic sediment and a camphor-degrading pseudomonad. Arch Environ Contam Toxicol. 1979;8(3):285–298. doi: 10.1007/BF01056245. [DOI] [PubMed] [Google Scholar]
  19. Cope O. B. Interactions between pesticides and wildlife. Annu Rev Entomol. 1971;16:325–364. doi: 10.1146/annurev.en.16.010171.001545. [DOI] [PubMed] [Google Scholar]
  20. Cox J. L. DDT residues in marine phytoplankton. Residue Rev. 1972;44:23–38. doi: 10.1007/978-1-4615-8491-9_2. [DOI] [PubMed] [Google Scholar]
  21. De Koning H. W., Mortimer D. C. DDT uptake and growth of Euglena gracilis. Bull Environ Contam Toxicol. 1971 May-Jun;6(3):244–248. doi: 10.1007/BF01539934. [DOI] [PubMed] [Google Scholar]
  22. Deo P. G., Alexander M. Ring hydroxylation of p-chlorophenylacetate by an arthrobacter strain. Appl Environ Microbiol. 1976 Jul;32(1):195–196. doi: 10.1128/aem.32.1.195-196.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. El Zorgani G. A., Omer M. E. Metabolism of Endolsulfan isomers by Aspergillus niger. Bull Environ Contam Toxicol. 1974 Aug;12(2):182–185. doi: 10.1007/BF01684958. [DOI] [PubMed] [Google Scholar]
  24. Engst R., Fritsche W., Knoll R., Kujawa M., Macholz R. M., Straube G. Interim results of studies of microbial isomerization of gamma-hexachlorocyclohexane. Bull Environ Contam Toxicol. 1979 Jul;22(4-5):699–707. doi: 10.1007/BF02027010. [DOI] [PubMed] [Google Scholar]
  25. Engst R., Macholz R. M., Kujawa M. Identifizierung von Metaboliten und der Abbauweg des Hexachlorbenzols in einer Schimmelpilzkultur. Nahrung. 1975;19(7):603–606. doi: 10.1002/food.19750190711. [DOI] [PubMed] [Google Scholar]
  26. Focht D. D., Alexander M. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem. 1971 Jan-Feb;19(1):20–22. doi: 10.1021/jf60173a042. [DOI] [PubMed] [Google Scholar]
  27. Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
  28. Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
  29. Francis A. J., Spanggord R. J., Ouchi G. I. Degradation of lindane by Escherichia coli. Appl Microbiol. 1975 Apr;29(4):567–568. doi: 10.1128/am.29.4.567-568.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. French A. L., Hoopingarner R. A. Dechlorination of DDT by membranes isolated from Escherichia coli. J Econ Entomol. 1970 Jun;63(3):756–759. doi: 10.1093/jee/63.3.756. [DOI] [PubMed] [Google Scholar]
  31. Geike F., Parasher C. D. Effect of hexachlorobenzene (HCB) on growth of Tetrahymena pyriformis. Bull Environ Contam Toxicol. 1976 Sep;16(3):347–354. doi: 10.1007/BF01685899. [DOI] [PubMed] [Google Scholar]
  32. Geike F., Parasher C. D. Effect of hexachlorobenzene on some growth parameters of Chlorella pyrenoidosa. Bull Environ Contam Toxicol. 1976 Jun;15(6):670–677. doi: 10.1007/BF01685616. [DOI] [PubMed] [Google Scholar]
  33. Glooschenko V., Holdrinet M., Lott J. N., Frank R. Bioconcentration of chlordane by the green alga Scenedesmus quadricauda. Bull Environ Contam Toxicol. 1979 Mar;21(4-5):515–520. doi: 10.1007/BF01685463. [DOI] [PubMed] [Google Scholar]
  34. Gregory W. W., Jr, Reed J. K., Priester L. E., Jr Accumulation of parathion and DDT by some algae and protozoa. J Protozool. 1969 Feb;16(1):69–71. doi: 10.1111/j.1550-7408.1969.tb02234.x. [DOI] [PubMed] [Google Scholar]
  35. Guenzi W. D., Beard W. E. Anaerobic biodegradation of DDT to DDD in soil. Science. 1967 May 26;156(3778):1116–1117. doi: 10.1126/science.156.3778.1116. [DOI] [PubMed] [Google Scholar]
  36. HYNES H. B., WILLIAMS T. R. The effect of DDT on the fauna of a Central African stream. Ann Trop Med Parasitol. 1962 Apr;56:78–91. doi: 10.1080/00034983.1962.11686094. [DOI] [PubMed] [Google Scholar]
  37. Haider K., Jagnow G. Abbau von 14C-, 3H- und 36Cl-markiertem gamma-Hexachlorcyclohexan durch anaerobe Bodenmikroorganismen. Arch Microbiol. 1975 Jun 22;104(2):113–121. doi: 10.1007/BF00447310. [DOI] [PubMed] [Google Scholar]
  38. Hansen P. D. Experiments on the accumulation of lindane (gamma-BHC) by the primary producers Chlorella spec. and Chlorella pyrenoidosa. Arch Environ Contam Toxicol. 1979;8(6):721–731. doi: 10.1007/BF01054873. [DOI] [PubMed] [Google Scholar]
  39. Harris C. R. Laboratory studies on the persistence of biological activity of some insecticides in soils. J Econ Entomol. 1969 Dec;62(6):1437–1441. doi: 10.1093/jee/62.6.1437. [DOI] [PubMed] [Google Scholar]
  40. Harrison R. B., Holmes D. C., Roburn J., Tatton J. O. The fate of some organochlorine pesticides on leaves. J Sci Food Agric. 1967 Jan;18(1):10–15. doi: 10.1002/jsfa.2740180104. [DOI] [PubMed] [Google Scholar]
  41. Heritage A. D., MacRae I. C. Degradation of lindane by cell-free preparations of Clostridium sphenoides. Appl Environ Microbiol. 1977 Aug;34(2):222–224. doi: 10.1128/aem.34.2.222-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Heritage A. D., Rae I. C. Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides. Appl Environ Microbiol. 1977 Jun;33(6):1295–1297. doi: 10.1128/aem.33.6.1295-1297.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hicks G. F., Jr, Corner T. R. Location and consequences of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane uptake by Bacillus megaterium. Appl Microbiol. 1973 Mar;25(3):381–387. doi: 10.1128/am.25.3.381-387.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hurlbert S. H. Secondary effects of pesticides on aquatic ecosystems. Residue Rev. 1975;57:81–148. doi: 10.1007/978-1-4613-9391-7_3. [DOI] [PubMed] [Google Scholar]
  45. Jagnow G., Haider K., Ellwardt P. C. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol. 1977 Dec 15;115(3):285–292. doi: 10.1007/BF00446454. [DOI] [PubMed] [Google Scholar]
  46. Johnsen R. E. DDT metabolism in microbial systems. Residue Rev. 1976;61:1–28. doi: 10.1007/978-1-4613-9401-3_1. [DOI] [PubMed] [Google Scholar]
  47. Johnson B. T., Goodman R. N., Goldberg H. S. Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science. 1967 Aug 4;157(3788):560–561. doi: 10.1126/science.157.3788.560. [DOI] [PubMed] [Google Scholar]
  48. Johnson B. T., Kennedy J. O. Biomagnification of p, p'-DDT and methoxychlor by bacteria. Appl Microbiol. 1973 Jul;26(1):66–71. doi: 10.1128/am.26.1.66-71.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jones A. S., Hodges C. S. Persistence of mirex and its effects on soil microorganisms. J Agric Food Chem. 1974 May-Jun;22(3):435–439. doi: 10.1021/jf60193a037. [DOI] [PubMed] [Google Scholar]
  50. Juengst F. W., Jr, Alexander M. Conversion of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to water-soluble products by microorganisms. J Agric Food Chem. 1976 Jan-Feb;24(1):111–115. doi: 10.1021/jf60203a009. [DOI] [PubMed] [Google Scholar]
  51. KALLMAN B. J., ANDREWS A. K. REDUCTIVE DECHLORINATION OF DDT TO DDD BY YEAST. Science. 1963 Sep 13;141(3585):1050–1051. doi: 10.1126/science.141.3585.1050. [DOI] [PubMed] [Google Scholar]
  52. KAUFMAN D. D., KEARNEY P. C. MICROBIAL DEGRADATION OF ISOPROPYL-N-3 -CHLOROPHENYLCARBAMATE AND 2-CHLOROETHYL-N-3-CHLOROPHENYLCARBAMATE. Appl Microbiol. 1965 May;13:443–446. doi: 10.1128/am.13.3.443-446.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. KLEIN A. K., LAUG E. P., DATTA P. R., MENDEL J. L. EVIDENCE FOR THE CONVERSION OF O,P-DDT (1,1,1-TRICHLORO-2-O-CHLOROPHENYL-2-P-CHLOROPHENYLETHANE) TO P,P'-DDT (1,1,1-TRICHLORO-2,2-BIS(P-CHLOROPHENYL)ETHANE IN RATS. J Am Chem Soc. 1965 Jun 5;87:2520–2522. doi: 10.1021/ja01089a057. [DOI] [PubMed] [Google Scholar]
  54. Kar S., Singh P. K. Effect of nutrients on the toxicity of pesticides carbofuran and hexachlorocyclohexane to blue-green alga Nostoc muscorum. Z Allg Mikrobiol. 1979;19(7):467–472. doi: 10.1002/jobm.3630190703. [DOI] [PubMed] [Google Scholar]
  55. Khan M. A., Kamal A., Wolin R. J., Runnels J. In vivo and in vitro epoxidation of aldrin by aquatic food chain organisms. Bull Environ Contam Toxicol. 1972 Oct;8(4):219–228. doi: 10.1007/BF01839516. [DOI] [PubMed] [Google Scholar]
  56. Kim S. C., Harmon L. G. Relationship between some chlorinated hydrocarbon insecticides and lactic culture organisms in milk. J Dairy Sci. 1970 Feb;53(2):155–160. doi: 10.3168/jds.S0022-0302(70)86173-2. [DOI] [PubMed] [Google Scholar]
  57. Ko W. H., Lockwood J. L. Conversion of DDT to DDD in soil and the effect of these compounds on soil microorganisms. Can J Microbiol. 1968 Oct;14(10):1069–1073. doi: 10.1139/m68-180. [DOI] [PubMed] [Google Scholar]
  58. Kohnen R., Haider K., Jagnow G. Investigations on the microbial degradation of Lindane in submerged and aerated moist soil. Environ Qual Saf Suppl. 1975;3:222–225. [PubMed] [Google Scholar]
  59. Kokke R. Pesticide and herbicide interaction with microbial ecosystems. Antonie Van Leeuwenhoek. 1970;36(4):580–581. [PubMed] [Google Scholar]
  60. Kricher J. C., Urey J. C., Hawes M. L. The effects of mirex and methoxychlor on the growth and productivity of Chlorella pyrenoidosa. Bull Environ Contam Toxicol. 1975 Nov;14(5):617–620. doi: 10.1007/BF01683381. [DOI] [PubMed] [Google Scholar]
  61. Kujawa M., Härtig M., Macholz R. M., Engst R. Der Abbau von 14-C-Lindan durch eine Schimmelpilzkultur. Nahrung. 1976;20(2):181–183. [PubMed] [Google Scholar]
  62. Kutches A. J., Church D. C. DDT- 14 C-metabolism by rumen bacteria and protozoa in vitro. J Dairy Sci. 1971 Apr;54(4):540–543. doi: 10.3168/jds.S0022-0302(71)85883-6. [DOI] [PubMed] [Google Scholar]
  63. Lal R., Saxena D. M. Effect of DDT on cell population growth, cell division, and DNA synthesis in Stylonychia notophora (Stokes). Arch Environ Contam Toxicol. 1980;9(2):163–170. doi: 10.1007/BF01055371. [DOI] [PubMed] [Google Scholar]
  64. Langlois B. E., Collins J. A., Sides K. G. Some factors affecting degradation of organochlorine pesticides by bacteria. J Dairy Sci. 1970 Dec;53(12):1671–1675. doi: 10.3168/jds.S0022-0302(70)86461-X. [DOI] [PubMed] [Google Scholar]
  65. MacRae I. C., Raghu K., Bautista E. M. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature. 1969 Mar 1;221(5183):859–860. doi: 10.1038/221859a0. [DOI] [PubMed] [Google Scholar]
  66. Matsumura F., Boush G. M. Degradation of insecticides by a soil fungus, trichoderma viride. J Econ Entomol. 1968 Jun;61(3):610–612. doi: 10.1093/jee/61.3.610. [DOI] [PubMed] [Google Scholar]
  67. Matsumura F., Boush G. M. Dieldrin: degradation by soil microorganism. Science. 1967 May 19;156(3777):959–961. doi: 10.1126/science.156.3777.959. [DOI] [PubMed] [Google Scholar]
  68. Matsumura F., Boush G. M., Tai A. Breakdown of dieldrin in the soil by a micro-organism. Nature. 1968 Aug 31;219(5157):965–967. doi: 10.1038/219965a0. [DOI] [PubMed] [Google Scholar]
  69. Matsumura F., Khanvilkar V. G., Patil K. C., Boush G. M. Metabolism of endrin by certain soil microorganisms. J Agric Food Chem. 1971 Jan-Feb;19(1):27–31. doi: 10.1021/jf60173a043. [DOI] [PubMed] [Google Scholar]
  70. Matsumura F., Patil K. C., Boush G. M. DDT metabolized by microorganisms from Lake Michigan. Nature. 1971 Apr 2;230(5292):325–326. doi: 10.1038/230325a0. [DOI] [PubMed] [Google Scholar]
  71. Matsumura F., Patil K. C., Boush G. M. Formation of "photodieldrin" by microorganisms. Science. 1970 Dec 11;170(3963):1206–1207. doi: 10.1126/science.170.3963.1206. [DOI] [PubMed] [Google Scholar]
  72. Mendel J. L., Walton M. S. Conversion of p,p' -DDT to p,p' -DDD by intestinal flora of the rat. Science. 1966 Mar 25;151(3717):1527–1528. doi: 10.1126/science.151.3717.1527. [DOI] [PubMed] [Google Scholar]
  73. Menzel D. W., Anderson J., Randtke A. Marine phytoplankton vary in their response to chlorinated hydrocarbons. Science. 1970 Mar 27;167(3926):1724–1726. doi: 10.1126/science.167.3926.1724. [DOI] [PubMed] [Google Scholar]
  74. Metcalf R. L., Sanborn J. R., Lu P. Y., Nye D. Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri-, tetra-, and pentachlorobiphenyl compared with DDE. Arch Environ Contam Toxicol. 1975;3(2):151–165. doi: 10.1007/BF02220785. [DOI] [PubMed] [Google Scholar]
  75. Miles J. R., Moy P. Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull Environ Contam Toxicol. 1979 Sep;23(1-2):13–19. doi: 10.1007/BF01769908. [DOI] [PubMed] [Google Scholar]
  76. Miles J. R., Tu C. M., Harris C. R. Degradation of heptachlor epoxide and heptachlor by a mixed culture of soil microorganisms. J Econ Entomol. 1971 Aug;64(4):839–841. doi: 10.1093/jee/64.4.839. [DOI] [PubMed] [Google Scholar]
  77. Miles J. R., Tu C. M., Harris C. R. Metabolism of heptachlor and its degradation products by soil microorganism. J Econ Entomol. 1969 Dec;62(6):1334–1338. doi: 10.1093/jee/62.6.1334. [DOI] [PubMed] [Google Scholar]
  78. Miyazaki S., Boush G. M., Matsumura F. Metabolism of 14C-chlorobenzilate and 14C-chloropropylate by Rhodotorula gracilis. Appl Microbiol. 1969 Dec;18(6):972–976. doi: 10.1128/am.18.6.972-976.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Miyazaki S., Thorsteinson A. J. Metabolism of DDT by fresh water diatoms. Bull Environ Contam Toxicol. 1972 Aug;8(2):81–83. doi: 10.1007/BF01684510. [DOI] [PubMed] [Google Scholar]
  80. Mosser J. L., Fisher N. S., Teng T. C., Wurster C. F. Polychlorinated biphenyls: toxicity to certain phytoplankters. Science. 1972 Jan 14;175(4018):191–192. doi: 10.1126/science.175.4018.191. [DOI] [PubMed] [Google Scholar]
  81. Mosser J. L., Fisher N. S., Wurster C. F. Polychlorinated biphenyls and DDT alter species composition in mixed cultures of algae. Science. 1972 May 5;176(4034):533–535. doi: 10.1126/science.176.4034.533. [DOI] [PubMed] [Google Scholar]
  82. Mosser J. L., Teng T. C., Walther W. G., Wurster C. F. Interactions of PCBs, DDT and DDE in a marine diatom. Bull Environ Contam Toxicol. 1974 Dec;12(6):665–668. doi: 10.1007/BF01685910. [DOI] [PubMed] [Google Scholar]
  83. Nakas J. P., Litchfield C. D. Evidence for the subcellular localization and specificity of chlordane inhibition in the marine bacterium Aeromonas proteolytica. Appl Environ Microbiol. 1979 Mar;37(3):471–479. doi: 10.1128/aem.37.3.471-479.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Nelson B. D., Williams C. Action of cyclodiene pesticides on oxidative metabolism in the yeast Saccharomyces cerevisiae. J Agric Food Chem. 1971 Mar-Apr;19(2):339–341. doi: 10.1021/jf60174a013. [DOI] [PubMed] [Google Scholar]
  85. Neudorf S., Khan M. A. Pick-up and metabolism of DDT, dieldrin and photodieldrin by a fresh water alga (Ankistrodesmus amalloides) and a microcrustacean (Daphnia pulex). Bull Environ Contam Toxicol. 1975 Apr;13(4):443–450. doi: 10.1007/BF01721850. [DOI] [PubMed] [Google Scholar]
  86. Orndorff S. A., Colwell R. R. Microbial transformation of kepone. Appl Environ Microbiol. 1980 Feb;39(2):398–406. doi: 10.1128/aem.39.2.398-406.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Paris D. F., Lewis D. L. Accumulation of methoxychlor by microorganisms isolated from aqueous systems. Bull Environ Contam Toxicol. 1976 Jan;15(1):24–32. doi: 10.1007/BF01686192. [DOI] [PubMed] [Google Scholar]
  88. Paris D. F., Lewis D. L., Barnett J. T. Bioconcentration of toxaphene by microorganisms. Bull Environ Contam Toxicol. 1977 May;17(5):564–572. doi: 10.1007/BF01685979. [DOI] [PubMed] [Google Scholar]
  89. Patil K. C., Matsumura F., Boush G. M. Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl Microbiol. 1970 May;19(5):879–881. doi: 10.1128/am.19.5.879-881.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Pfaender F. K., Alexander M. Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem. 1972 Jul-Aug;20(4):842–846. doi: 10.1021/jf60182a045. [DOI] [PubMed] [Google Scholar]
  91. Pollero R., de Pollero S. C. Degradation of DDT by a soil amoeba. Bull Environ Contam Toxicol. 1978 Mar;19(3):345–350. doi: 10.1007/BF01685809. [DOI] [PubMed] [Google Scholar]
  92. Puiseux-Dao S., Jeanne-Levain N., Roux F., Ribier J., Borghi H., Brun C. Analyse des effets du lindane, insecticide organochloré au niveau cellulaire. Protoplasma. 1977;91(3):325–341. doi: 10.1007/BF01281955. [DOI] [PubMed] [Google Scholar]
  93. Raghu K., MacRae I. C. Biodegradation of the gamma isomer of benzene hexachloride in submerged soils. Science. 1966 Oct 14;154(3746):263–264. doi: 10.1126/science.154.3746.263. [DOI] [PubMed] [Google Scholar]
  94. Raghu K., MacRae I. C. The effect of the gamma-isomer of benzene hexachloride upon the microflora of submerged rice soils. I. Effect upon algae. Can J Microbiol. 1967 Feb;13(2):173–180. doi: 10.1139/m67-024. [DOI] [PubMed] [Google Scholar]
  95. Rice C. P., Sikka H. C. Fate of dieldrin in selected species of marine algae. Bull Environ Contam Toxicol. 1973 Feb;9(2):116–123. doi: 10.1007/BF01684766. [DOI] [PubMed] [Google Scholar]
  96. Rice C. P., Sikka H. C. Uptake and metabolism of DDT by six species of marine algae. J Agric Food Chem. 1973 Mar-Apr;21(2):148–152. doi: 10.1021/jf60186a012. [DOI] [PubMed] [Google Scholar]
  97. Rosas S. B., Secco M., Ghittoni N. E. Effects of pesticides on the fatty acid and phospholipid composition of Escherichia coli. Appl Environ Microbiol. 1980 Aug;40(2):231–234. doi: 10.1128/aem.40.2.231-234.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Saxena D. M., Shivaji S., Lal R. Effect of DDT on DNA, RNA & protein synthesis in Tetrahymena pyriformis. Indian J Exp Biol. 1981 Jun;19(6):568–570. [PubMed] [Google Scholar]
  99. Sethunathan N., Bautista E. M., Yoshida T. Degradation of benzene hexachloride by a soil bacterium. Can J Microbiol. 1969 Dec;15(12):1349–1354. doi: 10.1139/m69-245. [DOI] [PubMed] [Google Scholar]
  100. Subba-Rao R. V., Alexander M. Cometabolism of products of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) by Pseudomonas putida. J Agric Food Chem. 1977 Jul-Aug;25(4):855–856. doi: 10.1021/jf60212a032. [DOI] [PubMed] [Google Scholar]
  101. Tabet J. C., Lichtenstein E. P. Degradation of [14C]photodieldrin by Trichoderma viride as affected by other insecticides. Can J Microbiol. 1976 Sep;22(9):1345–1356. doi: 10.1139/m76-198. [DOI] [PubMed] [Google Scholar]
  102. Tu C. M. Effects of pesticide seed treatments on Rhizobium japonicum and its symbiotic relationship with soybean. Bull Environ Contam Toxicol. 1977 Aug;18(2):190–199. doi: 10.1007/BF01686066. [DOI] [PubMed] [Google Scholar]
  103. Tu C. M., Miles J. R., Harris C. R. Soil microbial degradation of aldrin. Life Sci. 1968 Mar 15;7(6):311–322. doi: 10.1016/0024-3205(68)90028-3. [DOI] [PubMed] [Google Scholar]
  104. Ware G. W., Roan C. C. Interaction of pesticides with aquatic microorganisms and plankton. Residue Rev. 1970;33:15–45. doi: 10.1007/978-1-4615-8467-4_2. [DOI] [PubMed] [Google Scholar]
  105. Wedemeyer G. Partial hydrolysis of dieldrin by Aerobacter aerogenes. Appl Microbiol. 1968 Apr;16(4):661–662. doi: 10.1128/am.16.4.661-662.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Williams P. P. Metabolism of synthetic organic pesticides by anaerobic microorganisms. Residue Rev. 1977;66:63–135. doi: 10.1007/978-1-4612-6352-4_3. [DOI] [PubMed] [Google Scholar]
  107. Zoro J. A., Hunter J. M., Eglinton G., Ware G. C. Degradation of p,p'-DDT in reducing environments. Nature. 1974 Jan 25;247(5438):235–237. doi: 10.1038/247235a0. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES