Full text
PDF






















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERTSON J. N., Jr, MOAT A. G. BIOSYNTHESIS OF NICOTINIC ACID BY MYCOBACTERIUM TUBERCULOSIS. J Bacteriol. 1965 Feb;89:540–541. doi: 10.1128/jb.89.2.540-541.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ANDREOLI A. J., IKEDA M., NISHIZUKA Y., HAYAISHI O. Quinolinic acid: a precursor to nicotinamide adenine dinucleotide in Escherichia coli. Biochem Biophys Res Commun. 1963 Jul 18;12:92–97. doi: 10.1016/0006-291x(63)90241-9. [DOI] [PubMed] [Google Scholar]
- Ahmad F., Moat A. G. Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae. J Biol Chem. 1966 Feb 25;241(4):775–780. [PubMed] [Google Scholar]
- Andreoli A. J., Grover T., Gholson R. K., Matney T. S. Evidence for a functional pyridine nucleotide cycle in Escherichia coli. Biochim Biophys Acta. 1969 Dec 30;192(3):539–541. doi: 10.1016/0304-4165(69)90408-5. [DOI] [PubMed] [Google Scholar]
- Andreoli A. J., Okita T. W., Bloom R., Grover T. A. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific glycohydrolase in Escherichia coli. Biochem Biophys Res Commun. 1972 Oct 6;49(1):264–269. doi: 10.1016/0006-291x(72)90039-3. [DOI] [PubMed] [Google Scholar]
- Apps D. K. The NAD kinases of Saccharomyces cerevisiae. Eur J Biochem. 1970 Apr;13(2):223–230. doi: 10.1111/j.1432-1033.1970.tb00921.x. [DOI] [PubMed] [Google Scholar]
- Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baecker P. A., Yung S. G., Rodriguez M., Austin E., Andreoli A. J. Periplasmic localization of nicotinate phosphoribosyltransferase in Escherichia coli. J Bacteriol. 1978 Mar;133(3):1108–1112. doi: 10.1128/jb.133.3.1108-1112.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody S. Regulation of pyridine nucleotide levels and ratios in Neurospora crassa. J Biol Chem. 1972 Oct 10;247(19):6013–6017. [PubMed] [Google Scholar]
- Brown A. T., Wagner C. Regulation of enzymes involved in the conversion of tryptophan to nicotinamide adenine dinucleotide in a colorless strain of Xanthomonas pruni. J Bacteriol. 1970 Feb;101(2):456–463. doi: 10.1128/jb.101.2.456-463.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casciano D. A., Gaertner F. H. A specific and sensitive fluorometric assay for tryptophan oxygenase. Arch Biochem Biophys. 1973 Jun;156(2):658–664. doi: 10.1016/0003-9861(73)90318-4. [DOI] [PubMed] [Google Scholar]
- Chandler J. L., Gholson R. K. De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. J Bacteriol. 1972 Jul;111(1):98–102. doi: 10.1128/jb.111.1.98-102.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler J. L., Gholson R. K., Scott T. A. Studies on the de novo biosynthesis of NAD in Escherichia coli. I. Labelling patterns from precursors. Biochim Biophys Acta. 1970 Nov 24;222(2):523–526. doi: 10.1016/0304-4165(70)90145-5. [DOI] [PubMed] [Google Scholar]
- Chandler J. L., Gholson R. K. Studies on the biosynthesis of NAD in Escherichia coli. 3. Precursors of quinolinic acid in vitro. Biochim Biophys Acta. 1972 Apr 21;264(2):311–318. doi: 10.1016/0304-4165(72)90295-4. [DOI] [PubMed] [Google Scholar]
- Chandler J. L., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. II. Quantitative method for isolating quinolinic acid from biological materials. Anal Biochem. 1972 Aug;48(2):529–535. doi: 10.1016/0003-2697(72)90108-x. [DOI] [PubMed] [Google Scholar]
- Chen J. L., Tritz G. J. Isolation of a metabolite capable of differentially supporting the growth of nicotinamide adenine dinucleotide auxotrophs of Escherichia coli. J Bacteriol. 1975 Jan;121(1):212–218. doi: 10.1128/jb.121.1.212-218.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Tritz G. J. Detection of precursors of quinolinic acid in Escherichia coli. Microbios. 1976;16(65-66):207–218. [PubMed] [Google Scholar]
- Cobb J. R., Pearcy S. C., Gholson R. K. Metabolism of 6-aminonicotinic acid in Escherichia coli. J Bacteriol. 1977 Sep;131(3):789–794. doi: 10.1128/jb.131.3.789-794.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collier R. J. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol. 1967 Apr 14;25(1):83–98. doi: 10.1016/0022-2836(67)90280-x. [DOI] [PubMed] [Google Scholar]
- DALGLIESH C. E. Metabolism of the aromatic amino acids. Adv Protein Chem. 1955;10:31–150. doi: 10.1016/s0065-3233(08)60104-7. [DOI] [PubMed] [Google Scholar]
- Dahmen W., Webb B., Preiss J. The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast. Arch Biochem Biophys. 1967 May;120(2):440–450. doi: 10.1016/0003-9861(67)90262-7. [DOI] [PubMed] [Google Scholar]
- Dickinson E. S., Sundaram T. K. Chromosomal location of a gene defining nicotinamide deamidase in Escherichia coli. J Bacteriol. 1970 Mar;101(3):1090–1091. doi: 10.1128/jb.101.3.1090-1091.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans N. M., Smith D. D., Wicken A. J. Haemin and nicotinamide adenine dinucleotide requirements of Haemophilus influenzae and Haemophilus parainfluenzae. J Med Microbiol. 1974 Aug;7(3):359–365. doi: 10.1099/00222615-7-3-359. [DOI] [PubMed] [Google Scholar]
- Foster J. W., Kinney D. M., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J Bacteriol. 1979 Mar;137(3):1165–1175. doi: 10.1128/jb.137.3.1165-1175.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster J. W., Moat A. G. Mapping and characterization of the nad genes in Salmonella typhimurium LT-2. J Bacteriol. 1978 Feb;133(2):775–779. doi: 10.1128/jb.133.2.775-779.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedmann H. C., Cagen L. M. Microbial biosynthesis of B12-like compounds. Annu Rev Microbiol. 1970;24:159–208. doi: 10.1146/annurev.mi.24.100170.001111. [DOI] [PubMed] [Google Scholar]
- Friedmann H. C., Garstki C. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific amidohydrolase in Propionibacterium shermanii. Biochem Biophys Res Commun. 1973 Jan 4;50(1):54–58. doi: 10.1016/0006-291x(73)91062-0. [DOI] [PubMed] [Google Scholar]
- Fyfe J. A., Friedmann H. C. Vitamin B 12 biosynthesis. Enzyme studies on the formation of the alpha-glycosidic nucleotide precursor. J Biol Chem. 1969 Apr 10;244(7):1659–1666. [PubMed] [Google Scholar]
- GHOLSON R. K., KORI J. ENZYME REPRESSION IN THE REGULATION OF NICOTINAMIDE ADENINE DINUCLEOTIDE BIOSYNTHESIS IN BACILLUS SUBTILIS. J Biol Chem. 1964 Jul;239:PC2399–PC2399. [PubMed] [Google Scholar]
- GHOLSON R. K., UEDA I., OGASAWARA N., HENDERSON L. M. THE ENZYMATIC CONVERSION OF QUINOLINATE TO NICOTINIC ACID MONONUCLEOTIDE IN MAMMALIAN LIVER. J Biol Chem. 1964 Apr;239:1208–1214. [PubMed] [Google Scholar]
- Gaertner F. H., Cole K. W., Welch G. R. Evidence for distinct kynureninase and hydroxykynureninase activities in Neurospora crassa. J Bacteriol. 1971 Nov;108(2):902–909. doi: 10.1128/jb.108.2.902-909.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertner F. H., Shetty A. S. Kynureninase-type enzymes and the evolution of the aerobic tryptophan-to-nicotinamide adenine dinucleotide pathway. Biochim Biophys Acta. 1977 Jun 10;482(2):453–460. doi: 10.1016/0005-2744(77)90259-5. [DOI] [PubMed] [Google Scholar]
- Gholson R. K. Regulation of NAD biosynthesis via the pyridine nucleotide cycle. J Vitaminol (Kyoto) 1968 Mar 5;14(Suppl):114–122. doi: 10.5925/jnsv1954.14.supplement_114. [DOI] [PubMed] [Google Scholar]
- Gholson R. K., Tritz G. J., Matney T. S., Andreoli A. J. Mode of nicotinamide adenine dinucleotide utilization by Escherichia coli. J Bacteriol. 1969 Sep;99(3):895–896. doi: 10.1128/jb.99.3.895-896.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gopinathan K. P., Ramakrishnan T., Vaidyanathan C. S. Purification and properties of an inhibitor for nicotinamide-adenine dinucleotidase from Mycobacterium tuberculosis H-37-Rv. Arch Biochem Biophys. 1966 Feb;113(2):376–382. doi: 10.1016/0003-9861(66)90201-3. [DOI] [PubMed] [Google Scholar]
- Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith G. R., Chandler J. L., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product from the nadA gene product and its purification. Eur J Biochem. 1975 May;54(1):239–245. doi: 10.1111/j.1432-1033.1975.tb04133.x. [DOI] [PubMed] [Google Scholar]
- Hayaishi O., Ueda K. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem. 1977;46:95–116. doi: 10.1146/annurev.bi.46.070177.000523. [DOI] [PubMed] [Google Scholar]
- Heilmann H. D., Lingens F. Reinigung und Eigenschaften der 3-Hydroxy-anthranilat-Oxygenase aus Saccharomyces cerevisiae. Hoppe Seylers Z Physiol Chem. 1968 Feb;349(2):223–230. [PubMed] [Google Scholar]
- Hitchcock M. J., Katz E. Actinomycin biosynthesis by protoplasts derived from Streptomyces parvulus. Antimicrob Agents Chemother. 1978 Jan;13(1):104–114. doi: 10.1128/aac.13.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honjo T., Hayaishi O. Enzymatic ADP-ribosylation of proteins and regulation of cellular activity. Curr Top Cell Regul. 1973;7:87–127. doi: 10.1016/b978-0-12-152807-2.50011-5. [DOI] [PubMed] [Google Scholar]
- IMSANDE J. A COMPARATIVE STUDY OF THE REGULATION OF PYRIDINE NUCLEOTIDE FORMATION. Biochim Biophys Acta. 1964 Mar 16;82:445–453. doi: 10.1016/0304-4165(64)90436-2. [DOI] [PubMed] [Google Scholar]
- IMSANDE J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. III. Nicotinic acid mononucleotide pyrophos-phorylase. J Biol Chem. 1961 Feb;236:525–530. [PubMed] [Google Scholar]
- IMSANDE J. Pathway of diphosphopyridine nucleotide biosynthesis in Escherichia coli. J Biol Chem. 1961 May;236:1494–1497. [PubMed] [Google Scholar]
- Imai T. Isolation and properties of a glycohydrolase specific for nicotinamide mononucleotide from Azotobacter vinelandii. J Biochem. 1979 Apr;85(4):887–899. doi: 10.1093/oxfordjournals.jbchem.a132420. [DOI] [PubMed] [Google Scholar]
- Imai T. Purification and properties of nicotinamide mononucleotide amidohydrolase from Azotobacter vinelandii. J Biochem. 1973 Jan;73(1):139–153. [PubMed] [Google Scholar]
- Isquith A. J., Moat A. G. Biosynthesis of NAD and nicotinic acid by Clostridium butylicum. Biochem Biophys Res Commun. 1966 Mar 8;22(5):565–571. doi: 10.1016/0006-291x(66)90312-3. [DOI] [PubMed] [Google Scholar]
- JOSHI J. G., HANDLER P. Purification and properties of nicotinamidase from Torula cremoris. J Biol Chem. 1962 Mar;237:929–935. [PubMed] [Google Scholar]
- KONNO K., KURZMANN R., BIRD K. T., SBARRA A. Differentiation of human tubercle bacilli from atypical acid-fast bacilli. I. Niacin production of human tubercle bacilli and atypical acid-fast bacilli. Am Rev Tuberc. 1958 Apr;77(4):669–674. doi: 10.1164/artpd.1958.77.4.669. [DOI] [PubMed] [Google Scholar]
- KONNO K., KURZMANN R., BIRD K. T. The metabolism of nicotinic acid in Mycobacteria: a method for differentiating tubercle bacilli of human origin from other Mycobacteria. Am Rev Tuberc. 1957 Apr;75(4):529–537. doi: 10.1164/artpd.1957.75.4.529. [DOI] [PubMed] [Google Scholar]
- Kasărov L. B., Moat A. G. Biosynthesis of NAD in Haemophilus haemoglobinophilus. Biochim Biophys Acta. 1973 Sep 14;320(2):372–378. doi: 10.1016/0304-4165(73)90318-8. [DOI] [PubMed] [Google Scholar]
- Kasărov L. B., Moat A. G. Convenient method for enzymic synthesis of 14 C-nicotinamide riboside. Anal Biochem. 1972 Mar;46(1):181–186. doi: 10.1016/0003-2697(72)90410-1. [DOI] [PubMed] [Google Scholar]
- Kasărov L. B., Moat A. G. Metabolism of nicotinamide adenine dinucleotide in human and bovine strainsof Mycobacterium tuberculosis. J Bacteriol. 1972 May;110(2):600–603. doi: 10.1128/jb.110.2.600-603.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasărov L. B., Moat A. G. Metabolism of the pyridine nucleotides involved in nicotinamide adenine dinucleotide biosynthesis by Clostridium butylicum. J Bacteriol. 1973 Jul;115(1):35–42. doi: 10.1128/jb.115.1.35-42.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr T. J., Tritz G. J. Cross-feeding of Escherichia coli mutants defective in the biosynthesis of nicotinamide adenine dinucleotide. J Bacteriol. 1973 Sep;115(3):982–986. doi: 10.1128/jb.115.3.982-986.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinney D. M., Foster J. W., Moat A. G. Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide mononucleotide deamidase and characterization of pnuA mutants defective in nicotinamide mononucleotide transport. J Bacteriol. 1979 Nov;140(2):607–611. doi: 10.1128/jb.140.2.607-611.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krehl W. A., Teply L. J., Sarma P. S., Elvehjem C. A. GROWTH-RETARDING EFFECT OF CORN IN NICOTINIC ACID-LOW RATIONS AND ITS COUNTERACTION BY TRYPTOPHANE. Science. 1945 May 11;101(2628):489–490. doi: 10.1126/science.101.2628.489. [DOI] [PubMed] [Google Scholar]
- Langley D., Guest J. R. Biochemical and genetic characterics of deletion and other mutant strains of Salmonella typhimurium LT2 lacking alpha-keto acid dehydrogenase complex activities,. J Gen Microbiol. 1974 Jun;82(2):319–335. doi: 10.1099/00221287-82-2-319. [DOI] [PubMed] [Google Scholar]
- Lehman I. R. DNA ligase: structure, mechanism, and function. Science. 1974 Nov 29;186(4166):790–797. doi: 10.1126/science.186.4166.790. [DOI] [PubMed] [Google Scholar]
- Lester G. End-product regulation of the tryptophan-nicotinic acid pathway in Neurospora crassa. J Bacteriol. 1971 Aug;107(2):448–455. doi: 10.1128/jb.107.2.448-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingens F., Vollprecht P. Zur Biosynthese der Nicotinsäure in Streptomyceten, Algen, Phycomyceten und Hefe. Hoppe Seylers Z Physiol Chem. 1964;339(1):64–74. [PubMed] [Google Scholar]
- Lundquist R., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J Biol Chem. 1971 Feb 25;246(4):1107–1116. [PubMed] [Google Scholar]
- Lundquist R., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. II. Niacin starvation. J Biol Chem. 1973 Jul 25;248(14):5137–5143. [PubMed] [Google Scholar]
- McLaren J., Ngo D. T., Olivera B. M. Pyridine nucleotide metabolism in Escherichia coli. 3. Biosynthesis from alternative precursors in vivo. J Biol Chem. 1973 Jul 25;248(14):5144–5149. [PubMed] [Google Scholar]
- ORTEGA M. V., BROWN G. M. Precursors of nicotinic acid in Escherichia coli. J Biol Chem. 1960 Oct;235:2939–2945. [PubMed] [Google Scholar]
- Ogasawara N., Chandler J. L., Gholson R. K., Rosser R. J., Andreoli A. J. Biosynthesis of quinolinic acid in a cell-free system. Biochim Biophys Acta. 1967 Jun 13;141(1):199–201. doi: 10.1016/0304-4165(67)90265-6. [DOI] [PubMed] [Google Scholar]
- Ohtsu E., Ichiyama A., Nishizuka Y., Hayaishi O. Pathways of nicotinamide adenine dinucleotide biosynthesis in nicotinic acid or nicotinamide requiring microorganisms. Biochem Biophys Res Commun. 1967 Dec 15;29(5):635–641. doi: 10.1016/0006-291x(67)90263-x. [DOI] [PubMed] [Google Scholar]
- Olivera B. M., Lehman I. R. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1700–1704. doi: 10.1073/pnas.57.6.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALLERONI N. J., STANIER R. Y. REGULATORY MECHANISMS GOVERNING SYNTHESIS OF THE ENZYMES FOR TRYPTOPHAN OXIDATION BY PSEUDOMONAS FLUORESCENS. J Gen Microbiol. 1964 May;35:319–334. doi: 10.1099/00221287-35-2-319. [DOI] [PubMed] [Google Scholar]
- PARTRIDGE C. W. H., BONNER D. M., YANOFSKY C. A quantitative study of the relationship between tryptophan and niacin in Neurospora. J Biol Chem. 1952 Jan;194(1):269–278. [PubMed] [Google Scholar]
- PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
- ROBERTS D., FRIEDKIN M. The fluorometric determination of thymine in deoxyribonucleic acid and derivatives. J Biol Chem. 1958 Aug;233(2):483–487. [PubMed] [Google Scholar]
- Riley M., Anilionis A. Evolution of the bacterial genome. Annu Rev Microbiol. 1978;32:519–560. doi: 10.1146/annurev.mi.32.100178.002511. [DOI] [PubMed] [Google Scholar]
- Rosenfeld H., Feigelson P. Synergistic and product induction of the enzymes of tryptophan metabolism in Pseudomonas acidovorans. J Bacteriol. 1969 Feb;97(2):697–704. doi: 10.1128/jb.97.2.697-704.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SWARTZ M. N., KAPLAN N. O., FRECH M. E. Significance of heat-activated enzymes. Science. 1956 Jan 13;123(3185):50–53. doi: 10.1126/science.123.3185.50. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E., Hartman P. E. Linkage map of Salmonella typhimurium, edition V. Microbiol Rev. 1978 Jun;42(2):471–519. doi: 10.1128/mr.42.2.471-519.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanwal B. D. Allosteric controls of amphilbolic pathways in bacteria. Bacteriol Rev. 1970 Mar;34(1):20–39. doi: 10.1128/br.34.1.20-39.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxton R. E., Rocha V., Rosser R. J., Andreoli A. J., Shimoyama M., Kosaka A., Chandler J. L., Gholson R. K. A comparative study of the regulation of nicotinamide-adenine dinucleotide biosynthesis. Biochim Biophys Acta. 1968 Feb 1;156(1):77–84. doi: 10.1016/0304-4165(68)90106-2. [DOI] [PubMed] [Google Scholar]
- Schott H. H., Staudinger H., Ullrich V. The regulatory function of L-kynurenine 3-hydroxylase (EC 1.14.1.2) for the biosynthesis of pyridine nucleotides in anaerobically and aerobically grown Saccharomyces cerevisiae. Hoppe Seylers Z Physiol Chem. 1971 Dec;352(12):1654–1658. doi: 10.1515/bchm2.1971.352.2.1654. [DOI] [PubMed] [Google Scholar]
- Schott H. H., Ullrich V., Staudinger H. Enzymatic properties of L-kynurenine 3-hydroxylase (EC 1.14.1.2) in Neurospora crassa. Hoppe Seylers Z Physiol Chem. 1970 Jan;351(1):99–101. [PubMed] [Google Scholar]
- Scott T. A., Bellion E., Mattey M. The conversion of N-formyl-L-aspartate into nicotinic acid by extracts of Clostridium butylicum. Eur J Biochem. 1969 Sep;10(2):318–323. doi: 10.1111/j.1432-1033.1969.tb00692.x. [DOI] [PubMed] [Google Scholar]
- Scott T. A., Mattey M. The incorporation of formate into nicotinic acid by Clostridium butylicum. Biochem J. 1968 Apr;107(4):606–607. doi: 10.1042/bj1070606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shetty A. S., Gaertner F. H. Distinct kynureninase and hydroxykynureninase activities in microorganisms: occurrence and properties of a single physiologically discrete enzyme in yeast. J Bacteriol. 1973 Mar;113(3):1127–1133. doi: 10.1128/jb.113.3.1127-1133.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimoyama M., Tanigawa Y., Ito T., Murashima R., Ueda I., Tomoda T. Nicotinamide deamidation by microorganisms in rat stomach. J Bacteriol. 1971 Oct;108(1):191–195. doi: 10.1128/jb.108.1.191-195.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer R. L., Preiss J. Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b. J Biol Chem. 1967 Feb 10;242(3):385–392. [PubMed] [Google Scholar]
- Sriprakash K. S., Ramakrishnan T. Isoniazid & nicotinamide adenine dinucleotide synthesis in Mycobacterium tuberculosis. Indian J Biochem. 1969 Mar;6(1):49–50. [PubMed] [Google Scholar]
- Stouthamer A. H. A genetical and biochemical study of chlorate-resistant mutants of Salmonella typhimurium. Antonie Van Leeuwenhoek. 1969;35(4):505–521. doi: 10.1007/BF02219168. [DOI] [PubMed] [Google Scholar]
- Stouthamer A. H., Bettenhaussen C. W. Mapping of a gene causing resistance to chlorate in Salmonella typhimurium. Antonie Van Leeuwenhoek. 1970;36(4):555–565. doi: 10.1007/BF02069058. [DOI] [PubMed] [Google Scholar]
- Sugimura T. Poly(adenosine diphosphate ribose). Prog Nucleic Acid Res Mol Biol. 1973;13:127–151. doi: 10.1016/s0079-6603(08)60102-6. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K. Biosynthesis of nicotinamide-adenine dinucleotide in Escherichia coli. Biochim Biophys Acta. 1967 Apr 25;136(3):586–588. doi: 10.1016/0304-4165(67)90025-6. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K., Rajagopalan K. V., Pichappa C. V., Sarma P. S. Studies on pyridine nucleotide biosynthesis. Biochem J. 1960 Oct;77(1):145–149. doi: 10.1042/bj0770145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki N., Carlson J., Griffith G., Gholson R. K. Studies on the de novo biosynthesis of NAD in Escherichia coli. V. Properties of the quinolinic acid synthetase system. Biochim Biophys Acta. 1973 Apr 28;304(2):309–315. doi: 10.1016/0304-4165(73)90249-3. [DOI] [PubMed] [Google Scholar]
- Tritz G. J., Chandler J. L. Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. J Bacteriol. 1973 Apr;114(1):128–136. doi: 10.1128/jb.114.1.128-136.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tritz G. J. Characterization of the nadR locus in Escherichia coli. Can J Microbiol. 1974 Feb;20(2):205–209. doi: 10.1139/m74-031. [DOI] [PubMed] [Google Scholar]
- Tritz G. J., Matney T. S., Chandler J. L., Gholson R. K. Chromosomal location of the C gene involved in the biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli K-12. J Bacteriol. 1970 Oct;104(1):45–49. doi: 10.1128/jb.104.1.45-49.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tritz G. J., Matney T. S., Gholson R. K. Mapping of the nadB locus adjacent to a previously undescribed purine locus in Escherichia coli K-12. J Bacteriol. 1970 May;102(2):377–381. doi: 10.1128/jb.102.2.377-381.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viswamitra M. A. Molecular structure of nicotinamide adenine dinucleotide. Nature. 1975 Dec 11;258(5535):540–542. doi: 10.1038/258540a0. [DOI] [PubMed] [Google Scholar]
- WILSON R. G., HENDERSON L. M. Tryptophan-niacin relationship in Xanthomonas pruni. J Bacteriol. 1963 Jan;85:221–229. doi: 10.1128/jb.85.1.221-229.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner C., Brown A. T. Regulation of tryptophan pyrrolase activity in Xanthomonas pruni. J Bacteriol. 1970 Oct;104(1):90–97. doi: 10.1128/jb.104.1.90-97.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicks F. D., Sakakibara S., Gholson R. K. Evidence for an intermediate in quinolinate biosynthesis in Escherichia coli. J Bacteriol. 1978 Oct;136(1):136–141. doi: 10.1128/jb.136.1.136-141.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicks F. D., Sakakibara S., Gholson R. K., Scott T. A. The mode of condensation of aspartic acid and dihydroxyacetone phosphate in quinolinate synthesis in Escherichia coli. Biochim Biophys Acta. 1977 Nov 7;500(1):213–216. doi: 10.1016/0304-4165(77)90061-7. [DOI] [PubMed] [Google Scholar]
- Wimpenny J. W., Firth A. Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. J Bacteriol. 1972 Jul;111(1):24–32. doi: 10.1128/jb.111.1.24-32.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YANOFSKY C. The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis. J Bacteriol. 1954 Nov;68(5):577–584. doi: 10.1128/jb.68.5.577-584.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan J. H., Anderson B. M. Bull semen nicotinamide adenine dinucleotide nucleosidase. V. Kinetic studies. J Biol Chem. 1973 Jan 25;248(2):417–421. [PubMed] [Google Scholar]