Full text
PDF

































Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANNEAR D. I. Recovery of Strigomonas oncopelti after drying from the liquid state. Aust J Exp Biol Med Sci. 1961 Jun;39:295–303. doi: 10.1038/icb.1961.29. [DOI] [PubMed] [Google Scholar]
- Adar F. Resonance Raman spectra of cytochromes C557 and C558. Arch Biochem Biophys. 1977 May;181(1):5–7. doi: 10.1016/0003-9861(77)90476-3. [DOI] [PubMed] [Google Scholar]
- Angelopoulos E. Pellicular microtubules in the family Trypanosomatidae. J Protozool. 1970 Feb;17(1):39–51. doi: 10.1111/j.1550-7408.1970.tb05157.x. [DOI] [PubMed] [Google Scholar]
- Bacchi C. J., Ciaccio E. I., Koren L. E. Effects of some antitumor agents on growth and glycolytic enzymes of the flagellate Crithidia. J Bacteriol. 1969 Apr;98(1):23–28. doi: 10.1128/jb.98.1.23-28.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bacchi C. J., Hill G. C. Crithidia fasciculata: acriflavine-induced changes in soluble enzyme levels. Exp Parasitol. 1972 Apr;31(2):290–298. doi: 10.1016/0014-4894(72)90120-8. [DOI] [PubMed] [Google Scholar]
- Borst P., Grivell L. A. The mitochondrial genome of yeast. Cell. 1978 Nov;15(3):705–723. doi: 10.1016/0092-8674(78)90257-x. [DOI] [PubMed] [Google Scholar]
- Borst P., Hoeijmakers J. H. Kinetoplast DNA. Plasmid. 1979 Jan;2(1):20–40. doi: 10.1016/0147-619x(79)90003-9. [DOI] [PubMed] [Google Scholar]
- Brooker B. E. Desmosomes and hemidesmosomes in the flagellate Crithidia fasciculata. Z Zellforsch Mikrosk Anat. 1970;105(2):155–166. doi: 10.1007/BF00335467. [DOI] [PubMed] [Google Scholar]
- Brooker B. E. Flagellar attachment and detachment of Crithidia fasciculata to the gut wall of Anopheles gambiae. Protoplasma. 1971;73(2):191–202. doi: 10.1007/BF01275594. [DOI] [PubMed] [Google Scholar]
- Brooker B. E. Modifications in the arrangement of the pellicular microtubules of Crithidia fasciculata in the gut of Anopheles gambiae. Z Parasitenkd. 1972;40(4):271–280. doi: 10.1007/BF00328746. [DOI] [PubMed] [Google Scholar]
- Brooker B. E. The cell coat of Crithidia fasciculata. Parasitology. 1976 Jun;72(3):259–267. doi: 10.1017/s0031182000049477. [DOI] [PubMed] [Google Scholar]
- Brooker B. E. The fine structure of Crithidia fasciculata with special reference to the organelles involved in the ingestion and digestion of protein. Z Zellforsch Mikrosk Anat. 1971;116(4):532–563. doi: 10.1007/BF00335057. [DOI] [PubMed] [Google Scholar]
- Brooks A. S. Ultrastructure of the flagellar attachment site in three species of trypanosomatids. Trans Am Microsc Soc. 1978 Jul;97(3):287–296. [PubMed] [Google Scholar]
- Brun R. Ultrastruktur und Zyklus von Herpetomonas muscarum, "Herpetomonas mirabilis" und Crithidia luciliae in Chrysomyia chloropyga. Acta Trop. 1974;32(3):219–290. [PubMed] [Google Scholar]
- Bunn M. M., Soares T. C., Angluster J., De Souza W. Effect of 2-deoxy-D-glucose on Herpetomonas samuelpessoai. Z Parasitenkd. 1977 Jul 29;52(3):245–256. doi: 10.1007/BF00380544. [DOI] [PubMed] [Google Scholar]
- CLARK T. B., KELLEN W. R., LINDEGREN J. E., SMITH T. A. THE TRANSMISSION OF CRITHIDIA FASCICULATA LEGER 1902 IN CULISETA INCIDENS (THOMSON). J Protozool. 1964 Aug;11:400–402. doi: 10.1111/j.1550-7408.1964.tb01770.x. [DOI] [PubMed] [Google Scholar]
- COWPERTHWAITE J., WEBER M. M., PACKER L., HUTNER S. H. Nutrition of Herpetomonas (Strigomonas) culicidarum. Ann N Y Acad Sci. 1953 Oct 14;56(5):972–981. doi: 10.1111/j.1749-6632.1953.tb30277.x. [DOI] [PubMed] [Google Scholar]
- Camargo E. P., Freymuller E. Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid. Nature. 1977 Nov 3;270(5632):52–53. doi: 10.1038/270052a0. [DOI] [PubMed] [Google Scholar]
- Carter H. E., Gaver R. C., Yu R. K. A novel branched-chain sphingolipid base from Crithidia fasciculata. Biochem Biophys Res Commun. 1966 Feb 3;22(3):316–320. doi: 10.1016/0006-291x(66)90484-0. [DOI] [PubMed] [Google Scholar]
- Carvalho A. L., Deane M. P. Trypanosomatidae isolated from Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae), with a discussion on flagellates of insectivorous bugs. J Protozool. 1974 Feb;21(1):5–8. doi: 10.1111/j.1550-7408.1974.tb03605.x. [DOI] [PubMed] [Google Scholar]
- Cerisola J. A., Rohwedder R., Bozzini J. P., Del Prado C. E. Blastocrithidia triatomae n. sp. found in Triatoma infestans from Argentina. J Protozool. 1971 Aug;18(3):503–506. doi: 10.1111/j.1550-7408.1971.tb03362.x. [DOI] [PubMed] [Google Scholar]
- Chang K. P., Chang C. S., Sassa S. Heme biosynthesis in bacterium-protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2979–2983. doi: 10.1073/pnas.72.8.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang K. P. Reduced growth of Blastocrithidia culicis and Crithidia oncopelti freed of intracellular symbiotes by chloramphenicol. J Protozool. 1975 May;22(2):271–276. doi: 10.1111/j.1550-7408.1975.tb05866.x. [DOI] [PubMed] [Google Scholar]
- Chang K. P. Symbiote-free hemoflagellates, Blastocrithidia culicis and Crithidia oncopelti: their liver factor requirement and serologic identity. J Protozool. 1976 May;23(2):241–244. doi: 10.1111/j.1550-7408.1976.tb03762.x. [DOI] [PubMed] [Google Scholar]
- Chang K. P., Trager W. Nutritional significance of symbiotic bacteria in two species of hemoflagellates. Science. 1974 Feb 8;183(4124):531–532. doi: 10.1126/science.183.4124.531. [DOI] [PubMed] [Google Scholar]
- Chang K. P. Ultrastructure of symbiotic bacteria in normal and antibiotic-treated Blastocrithidia culicis and Crithidia oncopelti. J Protozool. 1974 Nov;21(5):699–707. doi: 10.1111/j.1550-7408.1974.tb03733.x. [DOI] [PubMed] [Google Scholar]
- Cheng D., Simpson L. Isolation and characterization of kinetoplast DNA and RNA of Phytomonas davidi. Plasmid. 1978 Jun;1(3):297–315. doi: 10.1016/0147-619x(78)90047-1. [DOI] [PubMed] [Google Scholar]
- Chesters J. K. Protein synthesis by cell-free extracts of Crithidia oncopelti. Biochim Biophys Acta. 1966 Feb 21;114(2):385–397. doi: 10.1016/0005-2787(66)90318-2. [DOI] [PubMed] [Google Scholar]
- Coakley C. J., Holwill M. E. Effects of pressure and temperature changes on the flagellar movement of crithidia oncopelti. J Exp Biol. 1974 Jun;60(3):605–629. doi: 10.1242/jeb.60.3.605. [DOI] [PubMed] [Google Scholar]
- Constantsas N. S., Levis G. M., Vakirtzi-Lemonias C. S. Crithidia fasciculata tyrosine transaminase. I. Development, characterization and differentiation from alanine transaminase. Biochim Biophys Acta. 1971 Jan 26;230(1):137–145. [PubMed] [Google Scholar]
- Cosgrove W. B., Skeen M. J. The cell cycle in Crithidia fasciculata. Temporal relationships between synthesis of deoxyribonucleic acid in the nucleus and in the kinetoplast. J Protozool. 1970 May;17(2):172–177. doi: 10.1111/j.1550-7408.1970.tb02350.x. [DOI] [PubMed] [Google Scholar]
- Cross G. A. Sedimentation roperties of polyribosomes, ribosomes and ribosomal subunits from Crithidia oncopelti. Biochim Biophys Acta. 1970 Apr 15;204(2):470–477. doi: 10.1016/0005-2787(70)90167-x. [DOI] [PubMed] [Google Scholar]
- Crowe W., Kushner I. An immunofluorescent method using Crithidia luciliae to detect antibodies to double-stranded DNA. Arthritis Rheum. 1977 Apr;20(3):811–814. doi: 10.1002/art.1780200308. [DOI] [PubMed] [Google Scholar]
- Cunningham L. V., Kazan B. H., Kuwahara S. S. Effect of long-chain fatty acids on some trypanosomatid flagellates. J Gen Microbiol. 1972 May;70(3):491–496. doi: 10.1099/00221287-70-3-491. [DOI] [PubMed] [Google Scholar]
- Davis P., Christian B., Russell A. S. Immunofluorescent technique for the detection of antibodies to n-DNA: comparison with radioimmunoassay. J Rheumatol. 1977 Spring;4(1):15–20. [PubMed] [Google Scholar]
- De Souza W., Bunn M. M., Angluster J. Demonstration of concanavalin A receptors on Leptomonas pessoai cell memebrane. J Protozool. 1976 May;23(2):329–333. doi: 10.1111/j.1550-7408.1976.tb03781.x. [DOI] [PubMed] [Google Scholar]
- De Souza W., Bunn M. M., Angluster J. Influence of 2-deoxy-D-glucose on the localization of concanavalin A receptors on the cell membrane of Herpetomonas sp. Cytobiologie. 1976 Dec;14(1):185–189. [PubMed] [Google Scholar]
- De Souza W., Rossi M. A., Kitajima E. W., Santos R. R., Roitman I. An electron-microscopic study of Herpetomonase sp. (Leptomonas pessoai). Can J Microbiol. 1976 Feb;22(2):197–203. doi: 10.1139/m76-027. [DOI] [PubMed] [Google Scholar]
- Dooris P. M., McGhee R. B. Immunologic and electrophoretic characteristics of two species of Crithidia. J Protozool. 1976 Aug;23(3):433–437. doi: 10.1111/j.1550-7408.1976.tb03805.x. [DOI] [PubMed] [Google Scholar]
- Dwyer D. M., Chang K. P. Surface membrane carbohydrate alterations of a flagellated protozoan mediated by bacterial endosymbiotes. Proc Natl Acad Sci U S A. 1976 Mar;73(3):852–856. doi: 10.1073/pnas.73.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards C., Lloyd D. Terminal oxidases and carbon monoxide-reacting haemoproteins in the trypanosomatid, Crithidia fasciculata. J Gen Microbiol. 1973 Dec;79(2):275–284. doi: 10.1099/00221287-79-2-275. [DOI] [PubMed] [Google Scholar]
- Edwards C., Statham M., LLoyd D. The preparation of large-scale synchronous cultures of the trypanosomatid, Crithidia fasciculata,by cell-size selection: changes in respiration and adenylate charge through the cell-cycle. J Gen Microbiol. 1975 May;88(1):141–152. doi: 10.1099/00221287-88-1-141. [DOI] [PubMed] [Google Scholar]
- Ellenbogen B. B., Hutner S. H., Tamburro K. M. Temperature-enhanced osmotic growth requirement of Crithidia. J Protozool. 1972 May;19(2):349–354. doi: 10.1111/j.1550-7408.1972.tb03474.x. [DOI] [PubMed] [Google Scholar]
- Englund P. T. Free minicircles of kinetoplast DNA in Crithidia fasciculata. J Biol Chem. 1979 Jun 10;254(11):4895–4900. [PubMed] [Google Scholar]
- Englund P. T. The replication of kinetoplast DNA networks in Crithidia fasciculata. Cell. 1978 May;14(1):157–168. doi: 10.1016/0092-8674(78)90310-0. [DOI] [PubMed] [Google Scholar]
- Esteves M. J., Elias C. A., Angluster J., De Souza W. Effect of U.V.-radiation on the cell membrane of Herpetomonas samuelpessoai: binding of concanavalin A. Int J Radiat Biol Relat Stud Phys Chem Med. 1978 Feb;33(2):191–194. doi: 10.1080/09553007814550081. [DOI] [PubMed] [Google Scholar]
- Fish W. R., Holz G. G., Jr, Beach D. H. Cultivation of trypanosomatids. J Parasitol. 1978 Jun;64(3):546–547. [PubMed] [Google Scholar]
- Fouts D. L., Manning J. E., Wolstenholme D. R. Physicochemical properties of kinetoplast DNA from Crithidia acanthocephali. Crithidia luciliae, and Trypanosoma lewisi. J Cell Biol. 1975 Nov;67(2PT1):378–399. doi: 10.1083/jcb.67.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank O., Baker H., Hutner S. H. Antagonists of growth inhibition of Crithidia by allopurinol, a guanine analog. J Protozool. 1970 May;17(2):153–158. doi: 10.1111/j.1550-7408.1970.tb02346.x. [DOI] [PubMed] [Google Scholar]
- Fukushima T., Shiota T. Pterins in human urine. J Biol Chem. 1972 Jul 25;247(14):4549–4556. [PubMed] [Google Scholar]
- GIBBS A. J. Crithidia familiaris N.SP. in Cenaeus carnifex Fabr. (Hemiptera). Parasitology. 1950 Oct;40(3-4):322–327. doi: 10.1017/s0031182000018199. [DOI] [PubMed] [Google Scholar]
- GIBBS A. J. Leptomonas serpens n. sp., parasitic in the digestive tract and salivary glands of Nezara viridula (Pentatomidae) and in the sap of Solanum lycopersicum (tomato) and other plants. Parasitology. 1957 Dec;47(3-4):297–303. doi: 10.1017/s0031182000021983. [DOI] [PubMed] [Google Scholar]
- GILLIES C., HANSON E. D. A NEW SPECIES OF LEPTOMONAS PARASITIZING THE MACRONUCLEUS OF PARAMECIUM TRICHIUM. J Protozool. 1963 Nov;10:467–473. doi: 10.1111/j.1550-7408.1963.tb01707.x. [DOI] [PubMed] [Google Scholar]
- Goldberg B., Lambros C., Bacchi C. J., Hutner S. H. Inhibition by several standard antiprotozoal drugs of growth and O2 uptake of cells and particulate preparations of a Leptomonas. J Protozool. 1974 May;21(2):322–326. doi: 10.1111/j.1550-7408.1974.tb03662.x. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
- Goldstein S. F., Holwill M. E., Silvester N. R. The effects of laser microbeam irradiation on the flagellum of Crithidia (Strigomonas) oncopelti. J Exp Biol. 1970 Oct;53(2):401–409. doi: 10.1242/jeb.53.2.401. [DOI] [PubMed] [Google Scholar]
- Gottlieb M., Lanzetta P. A., Berech J., Jr Crithidia fasciculata: characterization of polysaccharide. Exp Parasitol. 1972 Oct;32(2):206–210. doi: 10.1016/0014-4894(72)90026-4. [DOI] [PubMed] [Google Scholar]
- Gottlieb M. Polysaccharides of crithidia fasciculata. Identification and partial characterization of a cell surface constituent. Biochim Biophys Acta. 1978 Jul 17;541(4):444–458. doi: 10.1016/0304-4165(78)90154-x. [DOI] [PubMed] [Google Scholar]
- Gottlieb M., Zahalsky M., Zahalsky A. Crithidia as a model organism? J Parasitol. 1972 Oct;58(5):1008–1009. [PubMed] [Google Scholar]
- Gray M. W. Dinucleotide sequences containing both base and sugar modifications in the ribosomal RNA of Crithidia fasciculata. Biochim Biophys Acta. 1974 Dec 6;374(2):253–257. doi: 10.1016/0005-2787(74)90367-0. [DOI] [PubMed] [Google Scholar]
- Gruenberg J., Sharma P. R., Deshusses J. D-Glucose transport in Trypanosoma brucei. D-Glucose transport is the rate-limiting step of its metabolism. Eur J Biochem. 1978 Sep 1;89(2):461–469. doi: 10.1111/j.1432-1033.1978.tb12549.x. [DOI] [PubMed] [Google Scholar]
- Gueugnot J., Petavy A. F., Guillot J., Damez M., Coulet M. Etude de la fixation de diverses lectines à la surface de Crithidia luciliae. C R Seances Soc Biol Fil. 1976;170(4):782–786. [PubMed] [Google Scholar]
- Gutteridge W. E., Macadam R. F. An electron microscopic study of the bipolar bodies in Crithidia oncopelti. J Protozool. 1971 Nov;18(4):637–644. doi: 10.1111/j.1550-7408.1971.tb03388.x. [DOI] [PubMed] [Google Scholar]
- Gutteridge W. E. Some effects of pentamidine di-isethionate on Crithidia fasciculata. J Protozool. 1969 May;16(2):306–311. doi: 10.1111/j.1550-7408.1969.tb02275.x. [DOI] [PubMed] [Google Scholar]
- Guttman H. N., Eisenman R. N. Acriflavin-induced loss of kinetoplast deoxyribonucleic acid in Crithidia fasciculata (Culex pipiens strain). Nature. 1965 Sep 18;207(5003):1280–1281. doi: 10.1038/2071280a0. [DOI] [PubMed] [Google Scholar]
- HANSON W. L., McGHEE R. B. Experimental infection of the hemipteron Oncopeltus fasciatus with trypanosomatidae isolated from other hosts. J Protozool. 1963 May;10:233–238. doi: 10.1111/j.1550-7408.1963.tb01668.x. [DOI] [PubMed] [Google Scholar]
- Hajduk S. L. Demonstration of kinetoplast DNA in dyskinetoplastic strains of Trypanosoma equiperdum. Science. 1976 Feb 27;191(4229):858–859. doi: 10.1126/science.1251198. [DOI] [PubMed] [Google Scholar]
- Hajduk S. L. Dyskinetoplasty in two species of trypanosomatids. J Cell Sci. 1979 Feb;35:185–202. doi: 10.1242/jcs.35.1.185. [DOI] [PubMed] [Google Scholar]
- Hanson W. L., McGhee R. B., DeBoe J. H. Experimental infection of Triatoma infestans and Rhodnius prolixus with Trypanosomatidae of the genera Crithidia and Blastocrithidia. J Protozool. 1968 May;15(2):346–349. doi: 10.1111/j.1550-7408.1968.tb02134.x. [DOI] [PubMed] [Google Scholar]
- Harvey R. B., Lee S. B. FLAGELLATES OF LATICIFEROUS PLANTS. Plant Physiol. 1943 Oct;18(4):633–655. doi: 10.1104/pp.18.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy G. R., Speilman A., Gleason N. Human babesiosis: reservoir in infection on Nantucket Island. Science. 1976 Apr 30;192(4238):479–480. doi: 10.1126/science.769166. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Anderson W. A. Effects of acriflavine on the mitochondria and kinetoplast of Crithidia fasciculata. Correlation of fine structure changes with decreased mitochondrial enzyme activity. J Cell Biol. 1969 May;41(2):547–561. doi: 10.1083/jcb.41.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill G. C., Bonilla C. A. In vitro transcription of kinetoplast and nuclear DNA in Kinetoplastida. J Protozool. 1974 Nov;21(5):632–638. doi: 10.1111/j.1550-7408.1974.tb03717.x. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Brown C. A., Clark M. V. Structure and function of mitochondria in crithidia fasciculata. J Protozool. 1968 Feb;15(1):102–109. doi: 10.1111/j.1550-7408.1968.tb02093.x. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Chan S. K., Smith L. Purification and properties of cytochrome c 555 from a protozoan, Crithidia fasciculata. Biochim Biophys Acta. 1971 Nov 2;253(1):78–87. doi: 10.1016/0005-2728(71)90235-0. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Cross G. A. Cyanide-resistant respiration and a branched cytochrome system in Kinetoplastidae. Biochim Biophys Acta. 1973 Jun 28;305(3):590–596. doi: 10.1016/0005-2728(73)90078-9. [DOI] [PubMed] [Google Scholar]
- Hill G. C. Electron transport systems in kinetoplastida. Biochim Biophys Acta. 1976 Sep 27;456(2):149–193. doi: 10.1016/0304-4173(76)90011-2. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Gutteridge W. E., Mathewson N. W. Purification and properties of cytochromes c from trypanosomatids. Biochim Biophys Acta. 1971 Aug 27;243(2):225–229. doi: 10.1016/0005-2795(71)90079-1. [DOI] [PubMed] [Google Scholar]
- Hill G. C., Pettigrew G. W. Evidence for the amino-acid sequence of Crithidia fasciculata Cytochrome c555. Eur J Biochem. 1975 Sep 1;57(1):265–271. doi: 10.1111/j.1432-1033.1975.tb02298.x. [DOI] [PubMed] [Google Scholar]
- Hill R. C., Morris C. A., Weber M. M. Chloramphenicol resistant mitochondrial protein synthesis in Crithidia fasciculata. Arch Biochem Biophys. 1975 Oct;170(2):392–399. doi: 10.1016/0003-9861(75)90134-4. [DOI] [PubMed] [Google Scholar]
- Hoeijmakers J. H., Borst P. RNA from the insect trypanosome Crithidia luciliae contains transcripts of the maxi-circle and not of the mini-circle component of kinetoplast DNA. Biochim Biophys Acta. 1978 Nov 21;521(1):407–411. doi: 10.1016/0005-2787(78)90282-4. [DOI] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Control of flagellar wave movement in Crithidia oncopelti. Nature. 1975 May 8;255(5504):157–158. doi: 10.1038/255157a0. [DOI] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti. J Exp Biol. 1976 Aug;65(1):229–242. doi: 10.1242/jeb.65.1.229. [DOI] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects. J Exp Biol. 1974 Apr;60(2):437–444. doi: 10.1242/jeb.60.2.437. [DOI] [PubMed] [Google Scholar]
- Ilan J., Ilan J. A possible role of the AUG codon in the initiation of polypeptide synthesis in a eukaryotic orgamism. Biochim Biophys Acta. 1970 Dec 14;224(2):614–619. doi: 10.1016/0005-2787(70)90594-0. [DOI] [PubMed] [Google Scholar]
- Janovy J., Jr, Daggett P. M., Lee K. W. Herpetomonas megaseliae: architectural rearrangements during amastigote formation. J Parasitol. 1974 Aug;60(4):716–718. [PubMed] [Google Scholar]
- Janovy J., Jr, Lee K. W., Brumbaugh J. A. The differentiation of Herpetomonas megaseliae: ultrastructural observations. J Protozool. 1974 Feb;21(1):53–59. doi: 10.1111/j.1550-7408.1974.tb03616.x. [DOI] [PubMed] [Google Scholar]
- Janovy J., Jr Problems in the comparative physiology of some trypanosomatid flagellates. Acta Trop. 1977 Jun;34(2):177–184. [PubMed] [Google Scholar]
- Kidder G. W., Nolan L. L. Enzymatic synthesis of labeled carbamyl- aspartic acid. Biochem Biophys Res Commun. 1975 Jul 8;65(1):420–426. doi: 10.1016/s0006-291x(75)80110-0. [DOI] [PubMed] [Google Scholar]
- Kleisen C. M., Borst P. Are 50% of all cellular proteins synthesized on mitochondrial ribosomes in Crithidia luciliae? Biochim Biophys Acta. 1975 Apr 16;390(1):78–81. doi: 10.1016/0005-2787(75)90010-6. [DOI] [PubMed] [Google Scholar]
- Kleisen C. M., Borst P. Sequence heterogeneity of the mini-circles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network. Biochim Biophys Acta. 1975 Nov 4;407(4):473–478. doi: 10.1016/0005-2787(75)90301-9. [DOI] [PubMed] [Google Scholar]
- Kleisen C. M., Borst P., Weijers P. J. The structure of kinetoplast DNA. I. Properties of the intact multi-circular complex from Crithidia luciliae. Biochim Biophys Acta. 1975 May 1;390(2):155–167. [PubMed] [Google Scholar]
- Kleisen C. M., Weislogel P. O., Fonck K., Borst P. The structure of kinetoplast DNA. 2. Characterization of a novel component of high complexity present in the kinetoplast DNA network of Crithidia luciliae. Eur J Biochem. 1976 Apr 15;64(1):153–160. doi: 10.1111/j.1432-1033.1976.tb10283.x. [DOI] [PubMed] [Google Scholar]
- Kleisen M. C., Borst P., Weijers P. J. The structure of kinetoplast DNA. 1. The mini-circles of Crithidia lucilae are heterogeneous in base sequence. Eur J Biochem. 1976 Apr 15;64(1):141–151. doi: 10.1111/j.1432-1033.1976.tb10282.x. [DOI] [PubMed] [Google Scholar]
- Kolesnikov A. A., Abdurazzakov O., Semina I. E., Zaitseva G. N. Kharakteristika struktury kinetoplastnoi DNK Crithidia oncopelti po kinetike reassotsiatsii i plavleniiu. Biokhimiia. 1977 Aug;42(8):1392–1398. [PubMed] [Google Scholar]
- Korn E. D., Von Brand T., Tobie E. J. The sterols of Trypanosoma cruzi and Crithidia fasciculata. Comp Biochem Physiol. 1969 Aug 15;30(4):601–610. doi: 10.1016/0010-406x(69)92137-9. [DOI] [PubMed] [Google Scholar]
- Kostrikina N. A., Biriuzova V. I., Salikhov T. A., Zaitseva G. N. Elektronno-mikroskopicheskoe i biokhimicheskoe izuchenie bipoliarnykh tel kletki Crithidia oncopelti. Izv Akad Nauk SSSR Biol. 1974 Sep-Oct;(5):750–754. [PubMed] [Google Scholar]
- Kronick P., Hill G. C. Evidence for the functioning of cytochrome o in Kinetoplastida. Biochim Biophys Acta. 1974 Nov 19;368(2):173–180. doi: 10.1016/0005-2728(74)90147-9. [DOI] [PubMed] [Google Scholar]
- Kusel J. P., Boveris A., Storey B. T. H2O2 production and cytochrome c peroxidase activity in mitochondria isolated from the trypanosomatid hemoflagellate Crithidia fasciculata. Arch Biochem Biophys. 1973 Oct;158(2):799–805. doi: 10.1016/0003-9861(73)90574-2. [DOI] [PubMed] [Google Scholar]
- Kusel J. P., Storey B. T. CO-binding pigments and the functional terminal oxidase of the trypanosomatid hemoflagellate Crithidia fasciculata. Biochim Biophys Acta. 1973 Aug 31;314(2):164–177. doi: 10.1016/0005-2728(73)90132-1. [DOI] [PubMed] [Google Scholar]
- Kusel J. P., Storey B. T. Low-temperature spectral properties of the respiratory chain cytochromes of mitochondria from Crithidia fasciculata. Biochim Biophys Acta. 1973 Jun 28;305(3):570–580. doi: 10.1016/0005-2728(73)90076-5. [DOI] [PubMed] [Google Scholar]
- Kusel J. P., Storey B. T. Midpoint potentials of the mitochondrial cytochromes of Crithidia fasciculata. J Bacteriol. 1976 Aug;127(2):812–816. doi: 10.1128/jb.127.2.812-816.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusel J. P., Suriano J. R., Weber M. M. Isolation, purification, and characterization of Crithidia fasciculata cytochrome c555. Arch Biochem Biophys. 1969 Sep;133(2):293–304. doi: 10.1016/0003-9861(69)90457-3. [DOI] [PubMed] [Google Scholar]
- Langridge D. F., McGhee R. B. Crithidia mellificae n. sp. an acidophilic trypanosomatid of the honey bee Apis mellifera. J Protozool. 1967 Aug;14(3):485–487. doi: 10.1111/j.1550-7408.1967.tb02033.x. [DOI] [PubMed] [Google Scholar]
- Laub-Kupersztejn R., Thirion J. Existence of two distinct protein synthesis systems in the trypanosomatid Crithidia luciliae. Biochim Biophys Acta. 1974 Mar 27;340(3):314–322. doi: 10.1016/0005-2787(74)90276-7. [DOI] [PubMed] [Google Scholar]
- Leaver J. L., Ramponi G. Occurrence of histones in the trypanosomatid flagellate Crithidia oncopelti. Biochem J. 1971 Nov;125(2):44P–44P. doi: 10.1042/bj1250044pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linder J. C., Staehelin L. A. A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J Cell Biol. 1979 Nov;83(2 Pt 1):371–382. doi: 10.1083/jcb.83.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linder J. C., Staehelin L. A. Plasma membrane specializations in a trypanosomatid flagellate. J Ultrastruct Res. 1977 Aug;60(2):246–262. doi: 10.1016/s0022-5320(77)80069-5. [DOI] [PubMed] [Google Scholar]
- Lyddiatt A., Boulter D. The amino acid sequence of cytochrome c from the locust, Schistocerca gregaria Forskal. Biochem J. 1977 May 1;163(2):333–338. doi: 10.1042/bj1630333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCGHEE R. B., HANSON W. L. COMPARISON OF THE LIFE CYCLE OF LEPTOMONAS ONCOPELTI AND PHYTOMONAS ELMASSIANI. J Protozool. 1964 Nov;11:555–562. doi: 10.1111/j.1550-7408.1964.tb01798.x. [DOI] [PubMed] [Google Scholar]
- Manaia A. C., Roitman I. Effect of ethidium bromide on the oxidative metabolism and enzyme profiles of Crithidia fasciculata. J Protozool. 1977 Feb;24(1):192–195. doi: 10.1111/j.1550-7408.1977.tb05304.x. [DOI] [PubMed] [Google Scholar]
- Marr J. J., Berens R. L. Regulation of aerobic fermentation in protozoans. VI Comparative biochemistry of pathogenic and nonpathogenic protozoans. Acta Trop. 1977 Jun;34(2):143–155. [PubMed] [Google Scholar]
- Marr J. J., Birenbaum M. E., Ladenson J. H. Crithidia fasciculata: appearance kinetics of intermediates and regulation of aerobic fermentation. Exp Parasitol. 1977 Aug;42(2):322–330. doi: 10.1016/0014-4894(77)90089-3. [DOI] [PubMed] [Google Scholar]
- Marr J. J. Regulation of aerobic fermentation in protozoans. 3. Apparent unimportance of pyruvate kinase in carbohydrate metabolism. Comp Biochem Physiol B. 1974 Nov 15;49(3):531–545. doi: 10.1016/0305-0491(74)90189-8. [DOI] [PubMed] [Google Scholar]
- McGHEE R. B. The infection of avian embryos with crithidia species and Leishmania tarentola. J Infect Dis. 1959 Jul-Aug;105(1):18–25. doi: 10.1093/infdis/105.1.18. [DOI] [PubMed] [Google Scholar]
- McGhee R. B., Hanson W. L., Schmittner S. M. Isolation, cloning and determination of biologic characteristics of five new species of Crithidia. J Protozool. 1969 Aug;16(3):514–520. doi: 10.1111/j.1550-7408.1969.tb02310.x. [DOI] [PubMed] [Google Scholar]
- McGhee R. B., McGhee A. H. The relation of migration of Oncopeltus fasciatus to distribution of Phytomonas elmassiani in the eastern United States. J Protozool. 1971 May;18(2):344–352. doi: 10.1111/j.1550-7408.1971.tb03329.x. [DOI] [PubMed] [Google Scholar]
- Mcghee R. B., Postell F. J. Axenic cultivation of Phytomonas davidi Lafont (Trypanosomatidae), a symbiote of laticiferous plants (Euphorbiaceae). J Protozool. 1976 May;23(2):238–241. doi: 10.1111/j.1550-7408.1976.tb03761.x. [DOI] [PubMed] [Google Scholar]
- Meyer H., Holz G. G., Jr Biosynthesis of lipids by kinetoplastid flagellates. J Biol Chem. 1966 Nov 10;241(21):5000–5007. [PubMed] [Google Scholar]
- Midgley M. The transport of alpha-aminoisobutyrate into Crithidia fasciculata. Biochem J. 1978 Jul 15;174(1):191–202. doi: 10.1042/bj1740191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Min H. S. Evidence of dual mechanisms for transport of carbohydrate in cells of Crithidia sp. from Arilus cristatus. Life Sci. 1968 Oct 15;7(20):1105–1110. doi: 10.1016/0024-3205(68)90148-3. [DOI] [PubMed] [Google Scholar]
- Min H. S. Studies on the transport of carbohydrate in Crithidia luciliae. J Cell Physiol. 1965 Apr;65(2):243–248. doi: 10.1002/jcp.1030650211. [DOI] [PubMed] [Google Scholar]
- Mol J. N., Flavell R. A., Borst P. The presence of (dA.dT)20-25 tracts in the DNA of primitive eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2367–2377. doi: 10.1093/nar/3.9.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morales N. M., Roberts J. F. A comparative study of the ribonucleic acids of three species of trypanosomatids. Comp Biochem Physiol B. 1978;59(1):1–4. doi: 10.1016/0305-0491(78)90260-2. [DOI] [PubMed] [Google Scholar]
- Morales N. M., Roberts J. F. The ribonucleic acids of Crithidia fasciculata. J Protozool. 1978 Feb;25(1):140–144. doi: 10.1111/j.1550-7408.1978.tb03886.x. [DOI] [PubMed] [Google Scholar]
- Mundim M. H., Roitman I., Hermans M. A., Kitajima E. W. Simple nutrition of Crithidia deanei, a reduviid trypanosomatid with an endosymbiont. J Protozool. 1974 Oct;21(4):518–521. doi: 10.1111/j.1550-7408.1974.tb03691.x. [DOI] [PubMed] [Google Scholar]
- Müller M. Biochemistry of protozoan microbodies: peroxisomes, alpha-glycerophosphate oxidase bodies, hydrogenosomes. Annu Rev Microbiol. 1975;29:467–483. doi: 10.1146/annurev.mi.29.100175.002343. [DOI] [PubMed] [Google Scholar]
- Newton B. A. Biochemical peculiarities of trypanosomatid flagellates. Annu Rev Microbiol. 1968;22:109–130. doi: 10.1146/annurev.mi.22.100168.000545. [DOI] [PubMed] [Google Scholar]
- Nichols J. M., Cross G. A. Extra components in kinetoplast DNA preparations from Crithidia fasciculata. Biochem Biophys Res Commun. 1976 Aug 9;71(3):796–802. doi: 10.1016/0006-291x(76)90901-3. [DOI] [PubMed] [Google Scholar]
- Nichols J. M., Cross G. A. Isolation of mitochondria and mitochondrial RNA from Crithidia fasciculata. J Gen Microbiol. 1977 Apr;99(2):291–300. doi: 10.1099/00221287-99-2-291. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R., Borst P., Bakker S., Leene W. Localization of glycerol-3-phosphate oxidase in the mitochondrion and particulate NAD+-linked glycerol-3-phosphate dehydrogenase in the microbodies of the bloodstream form to Trypanosoma brucei. Eur J Biochem. 1977 Jun 1;76(1):29–39. doi: 10.1111/j.1432-1033.1977.tb11567.x. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R., Rijke D. D., Borst P. Reactions involved in energy transfer in trypanosomes-I. Characterization of the mitochondrial adenine nucleotide translocator and the ATPase of Crithidia luciliae. Comp Biochem Physiol B. 1976;54(1):7–12. doi: 10.1016/0305-0491(76)90048-1. [DOI] [PubMed] [Google Scholar]
- Palmer F. B. Biosynthesis of choline and ethanolamine phospholipids in Crithidia fasciculata. J Protozool. 1974 Feb;21(1):160–163. doi: 10.1111/j.1550-7408.1974.tb03631.x. [DOI] [PubMed] [Google Scholar]
- Palmer F. B. Lipids of Crithidia fasciculata. The occurrence and turnover of phosphoinositides. Biochim Biophys Acta. 1973 Sep 25;316(3):296–304. [PubMed] [Google Scholar]
- Parthasarathy M. V., VAN Slobbe W. G., Soudant C. Trypanosomatid flagellate in the Phloem of diseased coconut palms. Science. 1976 Jun 25;192(4246):1346–1348. doi: 10.1126/science.192.4246.1346. [DOI] [PubMed] [Google Scholar]
- Paulin J. J. Crithidia fasciculata: reconstruction of the mitochondrion based on serial thick sections and high-voltage electron microscopy. Exp Parasitol. 1977 Apr;41(2):283–289. doi: 10.1016/0014-4894(77)90101-1. [DOI] [PubMed] [Google Scholar]
- Paulin J. J., McGhee R. B. An ultrasturctural study of the trypanosomatid, Phytomonas elmassiani, from the milkweed, Asclepias syriaca. J Parasitol. 1971 Dec;57(6):1279–1287. [PubMed] [Google Scholar]
- Paulin J. J. The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. J Cell Biol. 1975 Aug;66(2):404–413. doi: 10.1083/jcb.66.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulin J. J. Ultrastructural observations on the kinetosome cycle of Crithidia fasciculata and its significance to other members of the order Kinetoplastida. Trans Am Microsc Soc. 1969 Jul;88(3):400–410. [PubMed] [Google Scholar]
- Pereira N. M., de Souza W., Machado R. D., de Castro F. T. Isolation and properties of flagella of trypanosomatids. J Protozool. 1977 Nov;24(4):511–514. doi: 10.1111/j.1550-7408.1977.tb01002.x. [DOI] [PubMed] [Google Scholar]
- Pettigrew G. W., Aviram I., Schejter A. Physicochemical properties of two atypical cytochromes c, Crithidia cytochrome c-557 and Euglena cytochrome c-558. Biochem J. 1975 Jul;149(1):155–167. doi: 10.1042/bj1490155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettigrew G. W., Leaver J. L., Meyer T. E., Ryle A. P. Purification, properties and amino acid sequence of atypical cytochrome c from two protozoa, Euglena gracilis and Crithidia oncopelti. Biochem J. 1975 May;147(2):291–302. doi: 10.1042/bj1470291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettigrew G. W., Smith G. M. Novel N-terminal protein blocking group identified as dimethylproline. Nature. 1977 Feb 17;265(5595):661–662. doi: 10.1038/265661a0. [DOI] [PubMed] [Google Scholar]
- Plowman J., Cone J. E., Guroff G. Identification of D-erythro-dihydroneopterin triphosphate, the first product of pteridine biosynthesis in Comamonas sp. (ATCC 11299a). J Biol Chem. 1974 Sep 10;249(17):5559–5564. [PubMed] [Google Scholar]
- Reijnders L., Sloof P., Sival J., Borst P. Gel electrophoresis of RNA under denaturing conditions. Biochim Biophys Acta. 1973 Oct 26;324(3):320–333. doi: 10.1016/0005-2787(73)90278-5. [DOI] [PubMed] [Google Scholar]
- Rembold H., Buff K. Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer. Effect of tetrahydropterins on intact rat-liver mitochondria. Eur J Biochem. 1972 Aug 4;28(4):579–585. doi: 10.1111/j.1432-1033.1972.tb01946.x. [DOI] [PubMed] [Google Scholar]
- Rembold H., Langenbach T. Effect of colchicine on cell membrane and on biopterin transport in Crithidia fasciculata. J Protozool. 1978 Aug;25(3 Pt 2):404–408. doi: 10.1111/j.1550-7408.1978.tb03915.x. [DOI] [PubMed] [Google Scholar]
- Rembold H., Vaubel A. Energy-dependent transport of pteridines into the trypanosomid flagellate, Crithidia fasciculata. Hoppe Seylers Z Physiol Chem. 1970 Oct;351(10):1277–1279. [PubMed] [Google Scholar]
- Rembold H., Vaubel A., Rao P. J. Effect of sugars, Na+-, and K+-ions on biopterin transport in Crithidia fasciculata. Arch Mikrobiol. 1974 Apr 10;97(1):51–62. doi: 10.1007/BF00403044. [DOI] [PubMed] [Google Scholar]
- Renger H. C., Wolstenholme D. R. The form and structure of kinetoplast DNA of Crithidia. J Cell Biol. 1972 Aug;54(2):346–364. doi: 10.1083/jcb.54.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers W. E., Wallace F. G. Two new subspecies of Herpetomonas muscarum (Leidy, 1856) Kent, 1880. J Protozool. 1971 Nov;18(4):645–654. doi: 10.1111/j.1550-7408.1971.tb03390.x. [DOI] [PubMed] [Google Scholar]
- Shapiro A., Hutner S. H., Katz L., Bacchi C. J., Tamburro K. O., Baker H. Dense Crithidia growth and heme sparing: relation to Fe, Cu, Mo chelation. J Protozool. 1978 Nov;25(4):530–534. doi: 10.1111/j.1550-7408.1978.tb04180.x. [DOI] [PubMed] [Google Scholar]
- Simpson A. M., Simpson L. Isolation and characterization of kinetoplast DNA networks and minicircles from Crithidia fasciculata. J Protozool. 1974 Nov;21(5):774–781. doi: 10.1111/j.1550-7408.1974.tb03751.x. [DOI] [PubMed] [Google Scholar]
- Simpson A. M., Simpson L. Pulse-labeling of kinetoplast DNA: localization of 2 sites of synthesis within the networks and kinetics of labeling of closed minicircles. J Protozool. 1976 Nov;23(4):583–587. doi: 10.1111/j.1550-7408.1976.tb03846.x. [DOI] [PubMed] [Google Scholar]
- Simpson L. Behavior of the kinetoplast of Leishmania tarentolae upon cell rupture. J Protozool. 1968 Feb;15(1):132–136. doi: 10.1111/j.1550-7408.1968.tb02097.x. [DOI] [PubMed] [Google Scholar]
- Simpson L., Da Silva A. Isolation and characterization of kinetoplast DNA from Leishmania tarentolae. J Mol Biol. 1971 Mar 28;56(3):443–473. doi: 10.1016/0022-2836(71)90394-9. [DOI] [PubMed] [Google Scholar]
- Simpson L. Isolation of maxicircle component of kinetoplast DNA from hemoflagellate protozoa. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1585–1588. doi: 10.1073/pnas.76.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson L., Simpson A. G. Kinetoplast RNA of Leishmania tarentolae. Cell. 1978 May;14(1):169–178. doi: 10.1016/0092-8674(78)90311-2. [DOI] [PubMed] [Google Scholar]
- Simpson L., Simpson A. M., Wesley R. D. Replication of the kinetoplast DNA of Leishmania tarentolae and Crithidia fasciculata. Biochim Biophys Acta. 1974 May 17;349(2):161–172. doi: 10.1016/0005-2787(74)90077-x. [DOI] [PubMed] [Google Scholar]
- Sixel J. L., Esteves M. J., Angluster J., De Souza W. Localization of concanavalin A binding sites on the cell membrane of Herpetomonas samuelpessoai: influence of growth conditions. Cytobiologie. 1978 Aug;17(2):421–432. [PubMed] [Google Scholar]
- Souto-Padrón T., De Souza W. Ultrastructural localization of basic proteins in Trypanosoma cruzi. J Histochem Cytochem. 1978 May;26(5):349–358. doi: 10.1177/26.5.77871. [DOI] [PubMed] [Google Scholar]
- Spencer R., Cross G. A. Purification and properties of nucleic acids from an unusual cytoplasmic organelle in the flagellate protozoan Crithidia oncopelti. Biochim Biophys Acta. 1975 May 1;390(2):141–154. doi: 10.1016/0005-2787(75)90337-8. [DOI] [PubMed] [Google Scholar]
- Srivastava H. K. Carbon monoxide-reactive haemoproteins in parasitic flagellate Crithidia oncopelti. FEBS Lett. 1971 Aug 15;16(3):189–191. doi: 10.1016/0014-5793(71)80129-1. [DOI] [PubMed] [Google Scholar]
- Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
- Steinert M., Assel S. Large circular mitochondrial DNA in Crithidia luciliae. Exp Cell Res. 1975 Dec;96(2):406–409. doi: 10.1016/0014-4827(75)90274-8. [DOI] [PubMed] [Google Scholar]
- Steinert M. Reversible inhibition of the division of Crithidia luciliae by hydroxyurea and its use for obtaining synchronized cultures. FEBS Lett. 1969 Nov 29;5(4):291–294. doi: 10.1016/0014-5793(69)80371-6. [DOI] [PubMed] [Google Scholar]
- Steinert M. Specific loss of kinetoplastic DNA in trypanosomatidae treated with ethidium bromide. Exp Cell Res. 1969 May;55(2):248–252. doi: 10.1016/0014-4827(69)90487-x. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S. Base compisition heterogeneity in kinetoplast DNA FROM FOUR SPECIES OF HEMOFLAGELLATES. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1249–1255. doi: 10.1016/s0006-291x(74)80418-3. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S., Borst P., Mol J. N., Kleisen C. M., Newton B. A. Specific detection of kinetoplast DNA in cytological preparations of trypanosomes by hybridization with complementary RNA. Exp Cell Res. 1973 Jan;76(1):175–185. doi: 10.1016/0014-4827(73)90433-3. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S., Steinert G. Etude, par autoradiographie, des effets du bromure d'éthidium sur la synthèse des acides nucléiques de Crithidia luciliae. Exp Cell Res. 1969 Jul;56(1):69–74. doi: 10.1016/0014-4827(69)90395-4. [DOI] [PubMed] [Google Scholar]
- Steinert M., Van Assel S. The loss of kinetoplastic DNA in two species of Trypanosomatidae treated with acriflavine. J Cell Biol. 1967 Aug;34(2):489–503. doi: 10.1083/jcb.34.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stingl G., Meingassner J. G., Swelty P., Knapp W. An immunofluorescence procedure for the demonstration of antibodies to native, double-stranded DNA and of circulating DNA-anti-DNA complexes. Clin Immunol Immunopathol. 1976 Sep;6(2):131–140. doi: 10.1016/0090-1229(76)90103-3. [DOI] [PubMed] [Google Scholar]
- Sukhareva-Nemakova N. N., Kornilova V. F., Silaev A. B. Vliianie tripaflavina na nakoplenie i sostav lipidov kul'tury Crithidia (Strigomonas) oncopelti. Izv Akad Nauk SSSR Biol. 1972 Mar-Apr;2:279–282. [PubMed] [Google Scholar]
- Sukhareva-Nemakova N. N., Titova T. S., Silaev A. B. Zavisimost' chuvstvitel'nosti Crithidia oncopelti k olivomitsinu ot soderzhaniia vnutrikletochnykh lipidov. Izv Akad Nauk SSSR Biol. 1975 Jan-Feb;(1):52–63. [PubMed] [Google Scholar]
- Sukhareva-Nemakova N. N., Zeleneva R. N., Silaev A. B. Napravlennyi biosintez lipidov v kletkakh prosteishego, ikh sostav i protivoopukholevye svoistva. Dokl Akad Nauk SSSR. 1972 Feb 21;202(6):1443–1446. [PubMed] [Google Scholar]
- TRAGER W., RUDZINSKA M. A. THE RIBOFLAVIN REQUIREMENT AND THE EFFECTS OF ACRIFLAVIN ON THE FINE STRUCTURE OF THE KINETOPLAST OF LEISHMANIA TARENTOLAE. J Protozool. 1964 Feb;11:133–145. doi: 10.1111/j.1550-7408.1964.tb01734.x. [DOI] [PubMed] [Google Scholar]
- Titova T. S., Sukhareva-Nemakova N. N., Uriniuk V. M., Silaey A. B. Sostav lipidov Crithidia oncopelti s raznoi chuvstvitel'nost'iu k olivomitsinu. Izv Akad Nauk SSSR Biol. 1976 Sep-Oct;(5):754–759. [PubMed] [Google Scholar]
- Toner J. J., Weber M. M. Respiratory control in mitochondria from Crithidia fasciculata. Biochem Biophys Res Commun. 1972 Jan 31;46(2):652–660. doi: 10.1016/s0006-291x(72)80190-6. [DOI] [PubMed] [Google Scholar]
- Tuan R. S., Chang K. P. Isolation of intracellular symbiotes by immune lysis of flagellate protozoa and characterization of their DNA. J Cell Biol. 1975 May;65(2):309–323. doi: 10.1083/jcb.65.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Assel S., Steinert M. Nuclear and kinetoplastic DNA replication cycles in normal and synchronously dividing Crithidia luciliae. Exp Cell Res. 1971 Apr;65(2):353–358. doi: 10.1016/0014-4827(71)90013-9. [DOI] [PubMed] [Google Scholar]
- Vanyushin B. F., Kirnos M. D. Structure of animal mitochondrial DNA (base composition, pyrimidine clusters, character of methylation). Biochim Biophys Acta. 1977 Mar 18;475(2):323–336. doi: 10.1016/0005-2787(77)90023-5. [DOI] [PubMed] [Google Scholar]
- Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969 Jul;5(1):163–193. doi: 10.1242/jcs.5.1.163. [DOI] [PubMed] [Google Scholar]
- Vickerman K. The free-living trypanoplasms: descriptions of three species of the genus Procryptobia n.g., and redescription of Dimastigella trypaniformis Sandon, with notes on their relevance to the microscopical diagnosis of disease in man and animals. Trans Am Microsc Soc. 1978 Oct;97(4):485–502. [PubMed] [Google Scholar]
- Wallace F. G. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966 Feb;18(1):124–193. doi: 10.1016/0014-4894(66)90015-4. [DOI] [PubMed] [Google Scholar]
- Wallace F. G., Wagner M., Rogers W. E. Varying kinetoplast ultrastructure in two subspecies of Herpetomonas muscarum (Leidy). J Protozool. 1973 May;20(2):218–222. doi: 10.1111/j.1550-7408.1973.tb00868.x. [DOI] [PubMed] [Google Scholar]
- Weislogel P. O., Hoeijmakers J. H., Fairlamb A. H., Kleisen C. M., Borst P. Characterization of kinetoplast DNA networks from the insect trypanosome Crithidia luciliae. Biochim Biophys Acta. 1977 Sep 20;478(2):167–179. doi: 10.1016/0005-2787(77)90180-0. [DOI] [PubMed] [Google Scholar]
- Wolstenholme D. R., Renger H. C., Manning J. E., Fouts D. L. Kinetoplast DNA of Crithidia. J Protozool. 1974 Nov;21(5):622–631. doi: 10.1111/j.1550-7408.1974.tb03716.x. [DOI] [PubMed] [Google Scholar]
- Zaitseva G. N., Kolesnikov A. A., Shirshov A. T. The genetic system of kinetoplasts in trypanosomatides. Mol Cell Biochem. 1977 Feb 4;14(1-3):47–54. doi: 10.1007/BF01734164. [DOI] [PubMed] [Google Scholar]
- Zeleneva R. N., Sukhareva-Nemakova N. N., Korzhenko V. P. Aminokislotnyi sostav kul'tural'noi zhidkosti Crithidia (Strigomonas) oncopelti. Izv Akad Nauk SSSR Biol. 1973 Jan-Feb;(1):132–134. [PubMed] [Google Scholar]
- Zeleneva R. N., Sukhareva-Nemakova N. N., Silaev A. B. Sostav lipidov zhgutinostsa Crithidia oncopelti, kul'tiviruemogo na peptonnoi srede. Izv Akad Nauk SSSR Biol. 1975 Jan-Feb;(1):151–153. [PubMed] [Google Scholar]
- de Souza W. Cytochemical detection of carbohydrates in the Golgi complex of Leptomonas pessoai. Z Parasitenkd. 1976 Feb 6;48(3-4):221–226. doi: 10.1007/BF00380395. [DOI] [PubMed] [Google Scholar]