Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Mar;49(3):509–516. doi: 10.1128/aem.49.3.509-516.1985

Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its breakdown products.

R V Subba-Rao, M Alexander
PMCID: PMC373540  PMID: 3994362

Abstract

Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.

Full text

PDF
509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. Biodegradation of chemicals of environmental concern. Science. 1981 Jan 9;211(4478):132–138. doi: 10.1126/science.7444456. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. P., Lichtenstein E. P. Effect of nutritional factors on DDT-degradation by Mucor alternans. Can J Microbiol. 1971 Oct;17(10):1291–1298. doi: 10.1139/m71-208. [DOI] [PubMed] [Google Scholar]
  3. Bollag J. M. Biochemical transformation of pesticides by soil fungi. CRC Crit Rev Microbiol. 1972 Nov;2(1):35–58. doi: 10.3109/10408417209108382. [DOI] [PubMed] [Google Scholar]
  4. Focht D. D., Alexander M. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem. 1971 Jan-Feb;19(1):20–22. doi: 10.1021/jf60173a042. [DOI] [PubMed] [Google Scholar]
  5. Focht D. D., Alexander M. Bacterial degradation of diphenylmethane, a DDT model substrate. Appl Microbiol. 1970 Oct;20(4):608–611. doi: 10.1128/am.20.4.608-611.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
  7. Hicks G. F., Jr, Corner T. R. Location and consequences of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane uptake by Bacillus megaterium. Appl Microbiol. 1973 Mar;25(3):381–387. doi: 10.1128/am.25.3.381-387.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hornemann U., Speedie M. K., Hurley L. H., Floss H. G. Demonstration of a C-methylating enzyme in cell free extracts of indolmycin-producing Streptomyces griseus. Biochem Biophys Res Commun. 1970 May 22;39(4):594–599. doi: 10.1016/0006-291x(70)90245-7. [DOI] [PubMed] [Google Scholar]
  9. Juengst F. W., Jr, Alexander M. Conversion of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to water-soluble products by microorganisms. J Agric Food Chem. 1976 Jan-Feb;24(1):111–115. doi: 10.1021/jf60203a009. [DOI] [PubMed] [Google Scholar]
  10. Matsumura F., Boush G. M. Degradation of insecticides by a soil fungus, trichoderma viride. J Econ Entomol. 1968 Jun;61(3):610–612. doi: 10.1093/jee/61.3.610. [DOI] [PubMed] [Google Scholar]
  11. Matsumura F., Patil K. C., Boush G. M. DDT metabolized by microorganisms from Lake Michigan. Nature. 1971 Apr 2;230(5292):325–326. doi: 10.1038/230325a0. [DOI] [PubMed] [Google Scholar]
  12. Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pfaender F. K., Alexander M. Effect of nutrient additions on the apparent cometabolism of DDT. J Agric Food Chem. 1973 May-Jun;21(3):397–399. doi: 10.1021/jf60187a046. [DOI] [PubMed] [Google Scholar]
  14. Pfaender F. K., Alexander M. Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem. 1972 Jul-Aug;20(4):842–846. doi: 10.1021/jf60182a045. [DOI] [PubMed] [Google Scholar]
  15. Subba-Rao R. V., Alexander M. Cometabolism of products of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) by Pseudomonas putida. J Agric Food Chem. 1977 Jul-Aug;25(4):855–856. doi: 10.1021/jf60212a032. [DOI] [PubMed] [Google Scholar]
  16. Subba-Rao R. V., Alexander M. Products Formed from Analogues of 1,1,1-Trichloro-2,2-Bis(p-Chlorophenyl) Ethane (DDT) Metabolites by Pseudomonas putida. Appl Environ Microbiol. 1977 Jan;33(1):101–108. doi: 10.1128/aem.33.1.101-108.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wedemeyer G. Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. I. Metabolic products. Appl Microbiol. 1967 May;15(3):569–574. doi: 10.1128/am.15.3.569-574.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES