Abstract
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander M. Biodegradation of chemicals of environmental concern. Science. 1981 Jan 9;211(4478):132–138. doi: 10.1126/science.7444456. [DOI] [PubMed] [Google Scholar]
- Anderson J. P., Lichtenstein E. P. Effect of nutritional factors on DDT-degradation by Mucor alternans. Can J Microbiol. 1971 Oct;17(10):1291–1298. doi: 10.1139/m71-208. [DOI] [PubMed] [Google Scholar]
- Bollag J. M. Biochemical transformation of pesticides by soil fungi. CRC Crit Rev Microbiol. 1972 Nov;2(1):35–58. doi: 10.3109/10408417209108382. [DOI] [PubMed] [Google Scholar]
- Focht D. D., Alexander M. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem. 1971 Jan-Feb;19(1):20–22. doi: 10.1021/jf60173a042. [DOI] [PubMed] [Google Scholar]
- Focht D. D., Alexander M. Bacterial degradation of diphenylmethane, a DDT model substrate. Appl Microbiol. 1970 Oct;20(4):608–611. doi: 10.1128/am.20.4.608-611.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
- Hicks G. F., Jr, Corner T. R. Location and consequences of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane uptake by Bacillus megaterium. Appl Microbiol. 1973 Mar;25(3):381–387. doi: 10.1128/am.25.3.381-387.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornemann U., Speedie M. K., Hurley L. H., Floss H. G. Demonstration of a C-methylating enzyme in cell free extracts of indolmycin-producing Streptomyces griseus. Biochem Biophys Res Commun. 1970 May 22;39(4):594–599. doi: 10.1016/0006-291x(70)90245-7. [DOI] [PubMed] [Google Scholar]
- Juengst F. W., Jr, Alexander M. Conversion of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to water-soluble products by microorganisms. J Agric Food Chem. 1976 Jan-Feb;24(1):111–115. doi: 10.1021/jf60203a009. [DOI] [PubMed] [Google Scholar]
- Matsumura F., Boush G. M. Degradation of insecticides by a soil fungus, trichoderma viride. J Econ Entomol. 1968 Jun;61(3):610–612. doi: 10.1093/jee/61.3.610. [DOI] [PubMed] [Google Scholar]
- Matsumura F., Patil K. C., Boush G. M. DDT metabolized by microorganisms from Lake Michigan. Nature. 1971 Apr 2;230(5292):325–326. doi: 10.1038/230325a0. [DOI] [PubMed] [Google Scholar]
- Neilson A. H., Allard A. S., Hynning P. A., Remberger M., Landner L. Bacterial methylation of chlorinated phenols and guaiacols: formation of veratroles from guaiacols and high-molecular-weight chlorinated lignin. Appl Environ Microbiol. 1983 Mar;45(3):774–783. doi: 10.1128/aem.45.3.774-783.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaender F. K., Alexander M. Effect of nutrient additions on the apparent cometabolism of DDT. J Agric Food Chem. 1973 May-Jun;21(3):397–399. doi: 10.1021/jf60187a046. [DOI] [PubMed] [Google Scholar]
- Pfaender F. K., Alexander M. Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J Agric Food Chem. 1972 Jul-Aug;20(4):842–846. doi: 10.1021/jf60182a045. [DOI] [PubMed] [Google Scholar]
- Subba-Rao R. V., Alexander M. Cometabolism of products of 1,1,1-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) by Pseudomonas putida. J Agric Food Chem. 1977 Jul-Aug;25(4):855–856. doi: 10.1021/jf60212a032. [DOI] [PubMed] [Google Scholar]
- Subba-Rao R. V., Alexander M. Products Formed from Analogues of 1,1,1-Trichloro-2,2-Bis(p-Chlorophenyl) Ethane (DDT) Metabolites by Pseudomonas putida. Appl Environ Microbiol. 1977 Jan;33(1):101–108. doi: 10.1128/aem.33.1.101-108.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wedemeyer G. Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. I. Metabolic products. Appl Microbiol. 1967 May;15(3):569–574. doi: 10.1128/am.15.3.569-574.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]