Abstract
Two fast-growing strains of cowpea rhizobia (A26 and A28) were found to grow anaerobically at the expense of NO3−, NO2−, and N2O as terminal electron acceptors. The two major differences between aerobic and denitrifying growth were lower yield coefficients (Y) and higher saturation constants (Ks) with nitrogenous oxides as electron acceptors. When grown aerobically, A26 and A28 adhered to Monod kinetics, respectively, as follows: Ks, 3.4 and 3.8 μM; Y, 16.0 and 14.0 g · cells eq−1; μmax, 0.41 and 0.33 h−1. Yield coefficients for denitrifying growth ranged from 40 to 70% of those for aerobic growth. Only A26 adhered to Monod kinetics with respect to growth on all three nitrogenous oxides. The apparent Ks values were 41, 270, and 460 μM for nitrous oxide, nitrate, and nitrite, respectively; the Ks for A28 grown on nitrate was 250 μM. The results are kinetically and thermodynamically consistent in explaining why O2 is the preferred electron acceptor. Although no definitive conclusions could be drawn regarding preferential utilization of nitrogenous oxides, nitrite was inhibitory to both strains and effected slower growth. However, growth rates were identical (μmax, 0.41 h−1) when A26 was grown with either O2 or NO3− as an electron acceptor and were only slightly reduced when A28 was grown with NO3− (0.25 h−1) as opposed to O2 (0.33 h−1).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Averill B. A., Tiedje J. M. The chemical mechanism of microbial denitrification. FEBS Lett. 1982 Feb 8;138(1):8–12. doi: 10.1016/0014-5793(82)80383-9. [DOI] [PubMed] [Google Scholar]
- Balderston W. L., Sherr B., Payne W. J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol. 1976 Apr;31(4):504–508. doi: 10.1128/aem.31.4.504-508.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. D., Jr, Payne W. J. Separation of soluble denitrifying enzymes and cytochromes from Pseudomonas perfectomarinus. Can J Microbiol. 1973 Jul;19(7):861–872. doi: 10.1139/m73-137. [DOI] [PubMed] [Google Scholar]
- Hernandez B. S., Focht D. D. Invalidity of the concept of slow growth and alkali production in cowpea rhizobia. Appl Environ Microbiol. 1984 Jul;48(1):206–210. doi: 10.1128/aem.48.1.206-210.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishaque M., Aleem M. I. Intermediates of denitrification in the chemoautotroph Thiobacillus denitrificans. Arch Mikrobiol. 1973 Dec 31;94(3):269–282. doi: 10.1007/BF00417456. [DOI] [PubMed] [Google Scholar]
- Kennedy I. R., Rigaud J., Trinchant J. C. Nitrate reductase from bacteroides of Rhizobium japonicum: enzyme characteristics and possible interaction with nitrogen fixation. Biochim Biophys Acta. 1975 Jul 27;397(1):24–35. doi: 10.1016/0005-2744(75)90175-8. [DOI] [PubMed] [Google Scholar]
- Koike I., Hattori A. Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and oxide-limited conditions. J Gen Microbiol. 1975 May;88(1):11–19. doi: 10.1099/00221287-88-1-11. [DOI] [PubMed] [Google Scholar]
- Koike I., Hattori A. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions. J Gen Microbiol. 1975 May;88(1):1–10. doi: 10.1099/00221287-88-1-1. [DOI] [PubMed] [Google Scholar]
- Kristjansson J. K., Hollocher T. C. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J Biol Chem. 1980 Jan 25;255(2):704–707. [PubMed] [Google Scholar]
- Matsubara T., Mori T. Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen. J Biochem. 1968 Dec;64(6):863–871. doi: 10.1093/oxfordjournals.jbchem.a128968. [DOI] [PubMed] [Google Scholar]
- Pagan J. D., Scowcroft W. R., Dudman W. F., Gibson A. H. Nitrogen fixation in nitrate reductase-deficient mutants of cultured rhizobia. J Bacteriol. 1977 Feb;129(2):718–723. doi: 10.1128/jb.129.2.718-723.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne W. J. Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev. 1973 Dec;37(4):409–452. doi: 10.1128/br.37.4.409-452.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. A., Tiedje J. M. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve. Appl Environ Microbiol. 1983 May;45(5):1453–1458. doi: 10.1128/aem.45.5.1453-1458.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St John R. T., Hollocher T. C. Nitrogen 15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa. J Biol Chem. 1977 Jan 10;252(1):212–218. [PubMed] [Google Scholar]
- Yoshinari T., Knowles R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun. 1976 Apr 5;69(3):705–710. doi: 10.1016/0006-291x(76)90932-3. [DOI] [PubMed] [Google Scholar]
- Zablotowicz R. M., Eskew D. L., Focht D. D. Denitrification in Rhizobium. Can J Microbiol. 1978 Jun;24(6):757–760. doi: 10.1139/m78-126. [DOI] [PubMed] [Google Scholar]
- Zablotowicz R. M., Focht D. D. Physiological Characteristics of Cowpea Rhizobia: Evaluation of Symbiotic Efficiency in Vigna unguiculata. Appl Environ Microbiol. 1981 Mar;41(3):679–685. doi: 10.1128/aem.41.3.679-685.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
