Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Mar;49(3):599–607. doi: 10.1128/aem.49.3.599-607.1985

Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.

D Kirchman, E K'nees, R Hodson
PMCID: PMC373556  PMID: 3994368

Abstract

Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.

Full text

PDF
599

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman J. S., Meeks J. C. Glutamine and glutamate transport by Anabaena variabilis. J Bacteriol. 1983 Oct;156(1):122–129. doi: 10.1128/jb.156.1.122-129.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cuhel R. L., Taylor C. D., Jannasch H. W. Assimilatory sulfur metabolism in marine microorganisms: considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis. Appl Environ Microbiol. 1982 Jan;43(1):160–168. doi: 10.1128/aem.43.1.160-168.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fuhrman J. A., Azam F. Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california. Appl Environ Microbiol. 1980 Jun;39(6):1085–1095. doi: 10.1128/aem.39.6.1085-1095.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kirchman D., Ducklow H., Mitchell R. Estimates of bacterial growth from changes in uptake rates and biomass. Appl Environ Microbiol. 1982 Dec;44(6):1296–1307. doi: 10.1128/aem.44.6.1296-1307.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirchman D., Hodson R. Inhibition by peptides of amino Acid uptake by bacterial populations in natural waters: implications for the regulation of amino Acid transport and incorporation. Appl Environ Microbiol. 1984 Apr;47(4):624–631. doi: 10.1128/aem.47.4.624-631.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Martin A. F., Rabinowitz M., Blough R., Prior G., Zak R. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem. 1977 May 25;252(10):3422–3429. [PubMed] [Google Scholar]
  8. Meyer-Reil L. A. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural water. Appl Environ Microbiol. 1978 Sep;36(3):506–512. doi: 10.1128/aem.36.3.506-512.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitra R. S. Protein synthesis in Escherichia coli during recovery from exposure to low levels of Cd2+. Appl Environ Microbiol. 1984 May;47(5):1012–1016. doi: 10.1128/aem.47.5.1012-1016.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Reeck G. R., Fisher L. A statistical analysis of the amino acid compositions of proteins. Int J Pept Protein Res. 1973;5(2):109–117. doi: 10.1111/j.1399-3011.1973.tb02325.x. [DOI] [PubMed] [Google Scholar]
  11. Tabor P. S., Neihof R. A. Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters. Appl Environ Microbiol. 1982 Oct;44(4):945–953. doi: 10.1128/aem.44.4.945-953.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Turnbough C. L., Jr Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates. J Bacteriol. 1983 Feb;153(2):998–1007. doi: 10.1128/jb.153.2.998-1007.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  14. Watson S. W., Novitsky T. J., Quinby H. L., Valois F. W. Determination of bacterial number and biomass in the marine environment. Appl Environ Microbiol. 1977 Apr;33(4):940–946. doi: 10.1128/aem.33.4.940-946.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yamamori T., Ito K., Nakamura Y., Yura T. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J Bacteriol. 1978 Jun;134(3):1133–1140. doi: 10.1128/jb.134.3.1133-1140.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES