Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Mar;49(3):614–621. doi: 10.1128/aem.49.3.614-621.1985

Nutrition and Growth Characteristics of Trichomitopsis termopsidis, a Cellulolytic Protozoan from Termites

David A Odelson 1, John A Breznak 1,*
PMCID: PMC373558  PMID: 16346754

Abstract

Putatively axenic cultures of Trichomitopsis termopsidis 6057, isolated by M. A. Yamin (J. Protozool. 25:535-538, 1978) from the hindgut of Zootermopsis termites, apparently contained methanogenic bacteria, inasmuch as small amounts of CH4 were produced during growth. However, T. termopsidis could be “cured” of methanogenic activity by incubation in the presence of bromoethanesulfonate. Both the cured derivative (6057C) and the parent strain (6057) required NaHCO3 and fetal bovine serum for good growth; the presence of yeast extract in media was stimulatory. Growth of both strains was markedly improved by substituting heat-killed cells of Bacteroides sp. strain JW20 (a termite gut isolate) for heat-killed rumen bacteria in media as a source of bacterial cell material. Heat-killed Bacteroides sp. strain JW20 was the best of a number of bacteria tested, and under these conditions H2 was a major protozoan fermentation product. Growth of T. termopsidis strains was further improved by co-cultivation in the presence of Methanospirillum hungatii. M. hungatii was the best of a number of H2-consuming bacteria tested, and under these conditions CH4, but not H2, was produced, indicating interspecies transfer of H2 between the protozoa and M. hungatii. Both strains of T. termopsidis used powdered, particulate forms of cellulose (e.g., pure cellulose, corncob, cereal leaves) as fermentable energy sources, although powdered wood, chitin, or xylan supported little or no growth. Cells of the cellulose-forming coccus Sarcina ventriculi also served as a fermentable energy source, but these were used poorly as a source of bacterial cell material. The only substantial difference between T. termopsidis 6057 and 6057C was that the latter grew poorly or not at all with rumen bacteria as a source of bacterial cell material. The improved growth of T. termopsidis in vitro should facilitate further studies on the cell biology and biochemistry of these symbiotic, anaerobic protozoa.

Full text

PDF
614

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979 Jun;43(2):260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breznak J. A. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 1982;36:323–343. doi: 10.1146/annurev.mi.36.100182.001543. [DOI] [PubMed] [Google Scholar]
  3. Breznak J. A. Symbiotic relationships between termites and their intestinal microbiota. Symp Soc Exp Biol. 1975;(29):559–580. [PubMed] [Google Scholar]
  4. CANALE-PAROLA E., BORASKY R., WOLFE R. S. Studies on Sarcina ventriculi. III. Localization of cellulose. J Bacteriol. 1961 Feb;81:311–318. doi: 10.1128/jb.81.2.311-318.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CANALE-PAROLA E., WOLFE R. S. SYNTHESIS OF CELLULOSE BY SARCINA VENTRICULI. Biochim Biophys Acta. 1964 Feb 10;82:403–405. doi: 10.1016/0304-4165(64)90314-9. [DOI] [PubMed] [Google Scholar]
  6. Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Canale-Parola E. Biology of the sugar-fermenting Sarcinae. Bacteriol Rev. 1970 Mar;34(1):82–97. doi: 10.1128/br.34.1.82-97.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cleveland L. R. Symbiosis between Termites and Their Intestinal Protozoa. Proc Natl Acad Sci U S A. 1923 Dec;9(12):424–428. doi: 10.1073/pnas.9.12.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coleman G. S. Rumen ciliate protozoa. Adv Parasitol. 1980;18:121–173. doi: 10.1016/s0065-308x(08)60399-1. [DOI] [PubMed] [Google Scholar]
  10. Doddema H. J., Vogels G. D. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol. 1978 Nov;36(5):752–754. doi: 10.1128/aem.36.5.752-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dorn M., Andreesen J. R., Gottschalk G. Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J Bacteriol. 1978 Jan;133(1):26–32. doi: 10.1128/jb.133.1.26-32.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Genthner B. R., Davis C. L., Bryant M. P. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol. 1981 Jul;42(1):12–19. doi: 10.1128/aem.42.1.12-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macy J. M., Snellen J. E., Hungate R. E. Use of syringe methods for anaerobiosis. Am J Clin Nutr. 1972 Dec;25(12):1318–1323. doi: 10.1093/ajcn/25.12.1318. [DOI] [PubMed] [Google Scholar]
  14. Odelson D. A., Breznak J. A. Cellulase and Other Polymer-Hydrolyzing Activities of Trichomitopsis termopsidis, a Symbiotic Protozoan from Termites. Appl Environ Microbiol. 1985 Mar;49(3):622–626. doi: 10.1128/aem.49.3.622-626.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Odelson D. A., Breznak J. A. Volatile Fatty Acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol. 1983 May;45(5):1602–1613. doi: 10.1128/aem.45.5.1602-1613.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  17. Potrikus C. J., Breznak J. A. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol. 1977 Feb;33(2):392–399. doi: 10.1128/aem.33.2.392-399.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potrikus C. J., Breznak J. A. Uric Acid-Degrading Bacteria in Guts of Termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol. 1980 Jul;40(1):117–124. doi: 10.1128/aem.40.1.117-124.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salanitro J. P., Muirhead P. A. Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl Microbiol. 1975 Mar;29(3):374–381. doi: 10.1128/am.29.3.374-381.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schultz J. E., Breznak J. A. Cross-Feeding of Lactate Between Streptococcus lactis and Bacteroides sp. Isolated from Termite Hindguts. Appl Environ Microbiol. 1979 Jun;37(6):1206–1210. doi: 10.1128/aem.37.6.1206-1210.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tamm S. L. Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J Cell Biol. 1982 Sep;94(3):697–709. doi: 10.1083/jcb.94.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trager W. A cellulase from the symbiotic intestinal flagellates of termites and of the roach, Cryptocercus punctulatus. Biochem J. 1932;26(6):1762–1771. doi: 10.1042/bj0261762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Uffen R. L. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3298–3302. doi: 10.1073/pnas.73.9.3298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vogels G. D., Hoppe W. F., Stumm C. K. Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol. 1980 Sep;40(3):608–612. doi: 10.1128/aem.40.3.608-612.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamin M. A. Cellulose Metabolism by the Termite Flagellate Trichomitopsis termopsidis. Appl Environ Microbiol. 1980 Apr;39(4):859–863. doi: 10.1128/aem.39.4.859-863.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamin M. A. Cellulose metabolism by the flagellate trichonympha from a termite is independent of endosymbiotic bacteria. Science. 1981 Jan 2;211(4477):58–59. doi: 10.1126/science.211.4477.58. [DOI] [PubMed] [Google Scholar]
  27. Zinder S. H., Anguish T., Cardwell S. C. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl Environ Microbiol. 1984 Jun;47(6):1343–1345. doi: 10.1128/aem.47.6.1343-1345.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES