Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1985 Mar;49(3):673–677. doi: 10.1128/aem.49.3.673-677.1985

Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

D B Janssen, A Scheper, L Dijkhuizen, B Witholt
PMCID: PMC373569  PMID: 3994371

Abstract

A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.

Full text

PDF
673

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony C., Zatman L. J. The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J. 1965 Sep;96(3):808–812. doi: 10.1042/bj0960808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. doi: 10.1128/aem.45.4.1286-1294.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouwer E. J., McCarty P. L. Transformations of halogenated organic compounds under denitrification conditions. Appl Environ Microbiol. 1983 Apr;45(4):1295–1299. doi: 10.1128/aem.45.4.1295-1299.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunner W., Staub D., Leisinger T. Bacterial degradation of dichloromethane. Appl Environ Microbiol. 1980 Nov;40(5):950–958. doi: 10.1128/aem.40.5.950-958.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunstan P. M., Anthony C., Drabble W. T. Microbial metabolism of C 1 and C 2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochem J. 1972 Jun;128(1):99–106. doi: 10.1042/bj1280099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldman P., Milne G. W., Keister D. B. Carbon-halogen bond cleavage. 3. Studies on bacterial halidohrolases. J Biol Chem. 1968 Jan 25;243(2):428–434. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Leisinger T. Microorganisms and xenobiotic compounds. Experientia. 1983 Nov 15;39(11):1183–1191. doi: 10.1007/BF01990355. [DOI] [PubMed] [Google Scholar]
  9. McConnell G., Ferguson D. M., Pearson C. R. Chlorinated hydrocarbons and the environment. Endeavour. 1975 Jan;34(121):13–18. doi: 10.1016/0160-9327(75)90062-9. [DOI] [PubMed] [Google Scholar]
  10. Motosugi K., Soda K. Microbial degradation of synthetic organochlorine compounds. Experientia. 1983 Nov 15;39(11):1214–1220. doi: 10.1007/BF01990358. [DOI] [PubMed] [Google Scholar]
  11. Omori T., Alexander M. Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl Environ Microbiol. 1978 May;35(5):867–871. doi: 10.1128/aem.35.5.867-871.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rittmann B. E., McCarty P. L. Utilization of dichloromethane by suspended and fixed-film bacteria. Appl Environ Microbiol. 1980 Jun;39(6):1225–1226. doi: 10.1128/aem.39.6.1225-1226.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stucki G., Krebser U., Leisinger T. Bacterial growth on 1,2-dichloroethane. Experientia. 1983 Nov 15;39(11):1271–1273. doi: 10.1007/BF01990365. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES