Abstract
The core objective of nanoparticles is to control and manipulate biomacromolecular constructs and supramolecular assemblies that are critical to living cells in order to improve the quality of human health. By definition, these constructs and assemblies are nanoscale and include entities such as drugs, proteins, DNA/RNA, viruses, cellular lipid bilayers, cellular receptor sites and antibody variable regions critical for immunology and are involved in events of nanoscale proportions. The emergence of such nanotherapeutics/diagnostics will allow a deeper understanding of human longevity and human ills that include cancer, cardiovascular disease and genetic disorders. A technology platform that provides a wide range of synthetic nanostructures that may be controlled as a function of size, shape and surface chemistry and scale to these nanotechnical dimensions will be a critical first step in developing appropriate tools and a scientific basis for understanding nanoparticles.
Keywords: Nanoparticles, Nanoscale, Biomacromolecular, Supramolecular, Diagnostics, Nanostructures
1. Nanoparticles
Conventional preparations like solution, suspension or emulsion suffer from certain limitations like high dose and low availability, first pass effect, intolerance, instability, and they exhibit fluctuations in plasma drug levels and do not provide sustained effect, therefore there is a need for some novel carriers which could meet ideal requirement of drug delivery system. Recently nanoparticles delivery system has been proposed as colloidal drug carriers. Nanoparticles (NP) are a type of colloidal drug delivery system comprising particles with a size range from 10 to 1000 nm in diameter. Nanoparticles may or may not exhibit size-related properties that differ significantly from those observed in fine particles or bulk materials (Buzea et al., 2007). The key advantages of nanoparticles are (1) improved bioavailability by enhancing aqueous solubility, (2) increasing resistance time in the body (increasing half life for clearance/increasing specificity for its cognate receptors and (3) targeting drug to specific location in the body (its site of action). This results in concomitant reduction in quantity of the drug required and dosage toxicity, enabling the safe delivery of toxic therapeutic drugs and protection of non target tissues and cells from severe side effects (Irving, 2007). It is increasingly used in different applications, including drug carrier systems and to pass organ barriers such as the blood-brain barrier, cell membrane etc. (Abhilash, 2010). They are based on biocompatible lipid and provide sustained effect by either diffusion or dissolution (Cavalli et al., 1995; Müller et al., 2000; Yang et al., 1999; zur Mühlen and Mehnert, 1998).
2. Drug release from nanoparticles
The nanoparticle is coated by polymer, which releases the drug by controlled diffusion or erosion from the core across the polymeric membrane or matrix. The membrane coating acts as a barrier to release, therefore, the solubility and diffusivity of drug in polymer membrane becomes the determining factor in drug release. Furthermore release rate can also be affected by ionic interaction between the drug and addition of auxillary ingredients. When the drug is involved in interaction with auxillary ingredients to form a less water soluble complex, then the drug release can be very slow with almost no burst release effect (Chen et al., 1994).
To develop a successful nanoparticulate system, both drug release and polymer biodegradation are important consideration factors. In general, drug release rate depends on (1) solubility of drug, (2) desorption of the surface bound/ adsorbed drug, (3) drug diffusion through the nanoparticle matrix, (4) nanoparticle matrix erosion/degradation and (5) combination of erosion/diffusion process (Mohanraj and Chen, 2006). Thus solubility, diffusion and biodegradation of the matrix materials govern the release process.
3. Types of nanoparticles
Extensive libraries of nanoparticles, composed of an assortment of different sizes, shapes, and materials, and with various chemical and surface properties, have already been constructed. The field of nanotechnology is under constant and rapid growth and new additions continue to supplement these libraries. The classes of nanoparticles listed below are all very general and multi-functional; however, some of their basic properties and current known uses in nanomedicine are described here.
3.1. Fullerenes
A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs, and cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar in structure to the graphite, which is composed of stacked grapheme sheets of linked hexagonal rings, additionally they may also contain pentagonal (or sometimes heptagonal) rings to give potentially porous molecules (Holister et al., 2003). Buckyball clusters or buckyballs composed of less than 300 carbon atoms are commonly known as endohedral fullerenes and include the most common fullerene, buckminsterfullerene, C60. Megatubes are larger in diameter than nanotubes and prepared with walls of different thickness which is potentially used for the transport of a variety of molecules of different sizes (Mitchell et al., 2001). Nano “onions” are spherical particles based on multiple carbon layers surrounding a buckyball core which are proposed for lubricants (Sano et al., 2001). These properties of fullerenes hold great promise in health and personal care application. The versatile biomedical applications are enlisted in Table 1.
Table 1.
Fullerenes composition | Application | References |
---|---|---|
Fullerene (C60) | HIV proteases | Friedman et al. (1993) and Sijbesma et al. (1993) |
Fulleropyrrolidines | HIV-1 and HIV-2 | Marchesan et al. (2005) |
Dendrofullerene 1 | HIV-1 replication | Brettreich and Hirsch (1998) and Schuster et al. (2000) |
Amino acid derivatives of fullerene C60 (ADF) | HIV and human cytomegalovirus replication | Kotelnikova et al. (2003) |
Buckminsterfullerene | Semliki forest virus (SFV, Togaviridae) or vesicular stomatitis virus (VSV, Rhabdoviridae | Kaesermann and Kempf (1997) |
Cationic, anionic and amino acid type fullerene | HIV-reverse transcriptase and hepatitis C virus replication | Mashino et al. (2005) |
Fullerene (C60) 34 methyl radicals | Free radicals and oxidative stress | Krusic et al. (1991) |
Fullerene (C60) | Liver toxicity and diminished lipid peroxidation | Slater et al. (1985) |
C3-Fullero-tris-methanodicarboxylic acid | Apoptosis of neuronal cells | Dugan et al. (1997) |
Carboxyfullerene | Apoptosis of hepatoma cells | Huang et al. (1998) |
Carboxyfullerenes | Neurological disease including Parkinson’s disease | Dugan et al. (1997) |
Fullerene (C60) with organic cationic compounds, viral carriers, recombinant proteins and inorganic nanoparticles | Gene transfer | Azzam and Domb (2004) |
Metallofullerol | Leukemia and bone cancer | Thrash et al. (1999) |
3.2. Solid lipid nanoparticles (SLNs)
SLNs mainly comprise lipids that are in solid phase at the room temperature and surfactants for emulsification, the mean diameters of which range from 50 nm to 1000 nm for colloid drug delivery applications (zur Mühlen et al., 1998). SLNs offer unique properties such as small size, large surface area, high drug loading, the interaction of phases at the interfaces, and are attractive for their potential to improve performance of pharmaceuticals, neutraceuticals and other materials (Cavalli et al., 1993). The typical methods of preparing SLNs include spray drying (Freitas and Müller, 1998), high shear mixing (Domb, 1993), ultra-sonication (zur Mühlen, 1996; Eldem et al, 1991), and high pressure homogenization (HPH) (Müller et al., 1996; Speiser, 1990). Solid lipids utilized in SLN formulations include fatty acids (e.g. palmitic acid, decanoic acid, and behenic acid), triglycerides (e.g. trilaurin, trimyristin, and tripalmitin), steroids (e.g. cholesterol), partial glycerides (e.g. glyceryl monostearate and gylceryl behenate) and waxes (e.g. cetyl palmitate). Several types of surfactants are commonly used as emulsifiers to stabilize lipid dispersion, including soybean lecithin, phosphatidylcholine, poloxamer 188, sodium cholate, and sodium glycocholate (Zhang et al., 2010).
Advantages of these solid lipid nanoparticles (SLN) are the use of physiological lipids, the avoidance of organic solvents in the preparation process, and a wide potential application spectrum (dermal, oral, intravenous). Additionally, improved bioavailability, protection of sensitive drug molecules from the environment (water, light) and controlled and/or targeted drug release (Mehnert and Mäder, 2001; Müller et al., 2002; Müller et al., 2000), improved stability of pharmaceuticals, feasibilities of carrying both lipophilic and hydrophilic drugs and most lipids being biodegradable (Müller and Runge, 1998; Jenning et al., 2000).
SLNs possess a better stability and ease of upgradability to production scale as compared to liposomes. This property may be very important for many modes of targeting. SLNs form the basis of colloidal drug delivery systems, which are biodegradable and capable of being stored for at least one year. There are several potential applications of SLNs some of which are given in Table 2.
Table 2.
SLN composition | Drug | Application | References |
---|---|---|---|
Stearic acid | Rifampicin, isoniazid, pyrazinamide | Mycobacterium tuberculosis | Pandey and Khuller (2005) |
Stearic acid, soya phosphatidylcholine, and Sodium taurocholate | Ciprofloxacin hydrochloride, tobramycin | Gram-negative bacteria, grampositive bacteria and mycoplasma | Jain and Banerjee (2008) |
Glyceryl tripalmitate and tyloxapol | Clotrimazole | Fungi (e.g. yeast, aspergilli, dermatophytes) | Souto et al. (2004) |
Glyceryl behenate and sodium deoxycholate | Ketoconazole | Fungi | Souto and Müller (2005) |
Glyceryl behenate, propylene glycol, tween 80, and Glyceryl monostearate | Miconazole nitrate | Fungi | Bhalekar et al. (2009) |
Glycerol palmitostearate | Econazole nitrate | Fungi | Sanna et al. (2007) |
Cetyl palmitate | Insulin | Type 1 diabetes | Sarmento et al. (2007) |
Lecithin, SODIUM taurocholate | Nimesulide | Inflammation | Jain et al. (2009a,b) |
Oleic acid | Ibuprofen | Inflammation | Panga et al. (2009) |
Poly(lactide) (PLA), poly(lactideco-glycolide) (PLGA), poly-ε-caprolactone (PCL) and poly(ortho esters) | Bacterial and viral antigens | Immunity | Tamber et al. (2005), Storni et al. (2005) and Yuki and Kiyono (2003) |
Stearic acid, soya phosphatidylcholine, and sodium taurocholate | Tobramycin | Pseudomonas aeruginosa | Cavalli et al. (2002) |
Soyabean-oil | Doxorubicin | Breast cancer | Wong et al. (2006) |
Hyaluronic acid–coupled chitosan | Oxaliplatin | Colorectal cancer | Jain et al. (2009a,b) |
Cholesteryl butyrate | Doxorubicin, paclitaxel | Colorectal cancer | Serpe et al. (2004) |
SLN | Tamoxifen, | Breast cancer | Fontana et al. (2005) |
SLN | Methotrexate and camptothecin | Carcinoma | Ruckmani et al. (2006) and Yang et al. (1999) |
3.3. Liposomes
Liposomes are vesicular structures with an aqueous core surrounded by a hydrophobic lipid bilayer, created by the extrusion of phospholipids. Phospholipids are GRAS (generally recognised as safe) ingredients, therefore minimizing the potential for adverse effects. Solutes, such as drugs, in the core cannot pass through the hydrophobic bilayer however hydrophobic molecules can be absorbed into the bilayer, enabling the liposome to carry both hydrophilic and hydrophobic molecules. The lipid bilayer of liposomes can fuse with other bilayers such as the cell membrane, which promotes release of its contents, making them useful for drug delivery and cosmetic delivery applications. Liposomes that have vesicles in the range of nanometers are also called nanoliposomes (Zhang and Granick, 2006; Cevc, 1996). Liposomes can vary in size, from 15 nm up to several μm and can have either a single layer (unilamellar) or multiple phospholipid bilayer membranes (multilamellar) structure. Unilamellar vesicles (ULVs) can be further classified into small unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs) depending on their size range (Vemuri and Rhodes, 1995).
The unique structure of liposomes, a lipid membrane surrounding an aqueous cavity, enables them to carry both hydrophobic and hydrophilic compounds without chemical modification. In addition, the liposome surface can be easily functionalized with ‘stealth’ material to enhance their in vivo stability or targeting ligands to enable preferential delivery of liposomes. These versatile properties of liposomes made them to be used as potent carrier for various drugs like antibacterials, antivirals, insulin, antineoplastics and plasmid DNA (Table 3).
Table 3.
Liposome composition | Drug | Application | References |
---|---|---|---|
Hydrogenated soya, phosphatidylcholine, cholesterol and distearoylphosphatidylglycerol (DSPG) | Amphotericin B | Aspergillus fumigatus | Takemoto et al. (2004) |
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol | Polymyxin B | Pseudomonas aeruginosa | Omri et al. (2002) |
Hydrogenated Soya phosphatidylcholine (PC) and cholesterol | Ampillicin | Micrococcus luteus and Salmonella typhimurium | Schumacher and Margalit (1997) |
Dipalmitoyl-phosphatidylcholine, dipalmitoyl-phosphatidylglycerol and cholesterol | Ciprofloxacin | Salmonella dublin | Magallanes et al. (1993) |
Dipalmitoyl-phosphatidylcholine (DPPC), cholesterol and dimethylammonium ethane carbamoyl cholesterol (DC-chol) | Benzyl penicillin | Staphylococcus aureus | Kim and Jones (2004) |
Phosphatidylcholine, cholesterol and phosphatidylinositol | Netilmicin | Bacillus subtilis and Escherichia coli | Mimoso et al. (1997) |
Partially hydrogenated egg phosphatidylcholine (PHEPC), cholesterol and 1,2-distearoylsn-glycero-3-phosphoethanolamine-N-(polyethylene glycol-2000) (PEGDSPE) | Gentamicin | Klebsiella pneumoniae | Schiffelers et al. (2001) |
Phosphatidyl glycerol, phosphatidyl choline and cholesterol | Streptomycin | Mycobacterium avium | Gangadharam et al. (1991) |
Hydrogenated soy phosphatidylcholine, cholesterol and distearoylphosphatidylglycerol (DSPG) | Amikacin | Gram-negative bacteria | Fielding et al. (1998) |
Stearylamine (SA) and dicetyl phosphate | Zidovudine | Human immunodeficiency virus | Kaur et al. (2008) |
Egg phosphatidylcholine, diacetylphosphate and cholesterol | Vancomycin or teicoplanin | methicillin-resistant Staphylococcus aureus (MRSA) | Onyeji et al. (1994) |
DC-Chol liposome | Plasmid DNA | Gene transfer in subcutaneous tumor | Whitemore et al. (2001) |
Liposome | Daunorubicin and doxorubicin | Breast cancer | Park (2002) |
Liposome | Anti-GD2 immunoliposomes, Liposomes Entrapping Fenretinide (HPR), Gold-Containing Liposomes | Neuroblastoma | Di Paolo et al. (2009) |
Hepatically targeted liposomes | Insulin | Diabetes mellitus | Spangler (1990) |
3.4. Nanostructured lipid carriers (NLC)
Nanostructured Lipid Carriers are produced from blend of solid and liquid lipids, but particles are in solid state at body temperature. Lipids are versatile molecules that may form differently structured solid matrices, such as the nanostructured lipid carriers (NLC) and the lipid drug conjugate nanoparticles (LDC), that have been created to improve drug loading capacity (Wissing et al., 2004). The NLC production is based on solidified emulsion (dispersed phase) technologies. NLC can present an insufficient loading capacity due to drug expulsion after polymorphic transition during storage, particularly if the lipid matrix consists of similar molecules.
Drug release from lipid particles occurs by diffusion and simultaneously by lipid particle degradation in the body. In some cases it might be desirable to have a controlled fast release going beyond diffusion and degradation. Ideally this release should be triggered by an impulse when the particles are administered. NLCs accommodate the drug because of their highly unordered lipid structures. A desired burst drug release can be initiated by applying the trigger impulse to the matrix to convert in a more ordered structure. NLCs of certain structures can be triggered this way (Radtke and Müller, 2001). NLCs can generally be applied where solid nanoparticles possess advantages for the delivery of drugs. Major application areas in pharmaceutics are topical drug delivery, oral and parenteral (subcutaneous or intramuscular and intravenous) route. LDC nanoparticles have proved particularly useful for targeting water-soluble drug administration. They also have applications in cosmetics, food and agricultural products. These have been utilized in the delivery of anti-inflammatory compounds, cosmetic preparation, topical cortico therapy and also increases bioavailability and drug loading capacity. Few biomedical applications of NLCs are enlisted in Table 4.
Table 4.
Nanostructured lipid carrier’s composition | Application | References |
---|---|---|
Phosphatidylcholine, dynasan and flurbiprofen | Sustained release of anti-inflammatory drug | Bhaskar et al. (2009) |
Stearic acid, oleic acid, carbapol and minoxidil | Pharmaceutical, cosmetic and biochemical purposes | Silva et al. (2009) |
Fluticasone propionate, glyceryl palmito-stearate and PEG | Topical corticotherapy | Doktorovová et al. (2010) |
Beta-carotene loaded Propylene glycol monostearate | Evaluate the feasibility | Hentschel et al. (2008) |
Monostearin and caprylic and capric triglycerides | Improved drug loading capacity and controled release properties | Hu et al. (2006) |
Clozapine, triglycerides (trimyristin, tripalmitin and tristearin), soylecithin 95% and poloxamer 188) | Improved bioavailability | Venkateswarlu and Manjunath (2004) |
3.5. Nanoshells
Nanoshells are also notorious as core-shells, nanoshells are spherical cores of a particular compound (concentric particles) surrounded by a shell or outer coating of thin layer of another material, which is a few 1–20 nm nanometers thick (Liz-Marzan et al., 2001; Davies et al., 1998; Templeton et al., 2000; Xia et al., 2000). Nanoshell particles are highly functional materials show modified and improved properties than their single component counterparts or nanoparticles of the same size. Their properties can be modified by changing either the constituting materials or core-to-shell ratio (Oldenberg et al., 1998). Nanoshell materials can be synthesized from semiconductors (dielectric materials such as silica and polystyrene), metals and insulators. Usually dielectric materials such as silica and polystyrene are commonly used as core because they are highly stable (Kalele et al., 2006a,b).
Metal nanoshells are a novel type of composite spherical nanoparticles consisting of a dielectric core covered by a thin metallic shell which is typically gold. Nanoshells possess highly favorable optical and chemical properties for biomedical imaging and therapeutic applications. Nanoshells offer other advantages over conventional organic dyes including improved optical properties and reduced susceptibility to chemical/thermal denaturation. Furthermore, the same conjugation protocols used to bind biomolecules to gold colloid are easily modified for nanoshells (Loo et al., 2004). When a nanoshell and polymer matrix is illuminated with resonant wavelength, nanoshells absorb heat and transfer to the local environment. This causes collapse of the network and release of the drug. In core shell particles-based drug delivery systems either the drug can be encapsulated or adsorbed onto the shell surface (Sparnacci et al., 2002). The shell interacts with the drug via a specific functional group or by electrostatic stabilization method. When it comes in contact with the biological system, it directs the drug. In imaging applications, nanoshells can be tagged with specific antibodies for diseased tissues or tumors. Nanoshell materials have received considerable attention in recent years because of potential applications associated with them. A few applications in the area of imaging and diagnostics are discussed in Table 5.
Table 5.
Nanoshell’s composition | Applications | References |
---|---|---|
Silica coating of silver colloids | Stability of colloids | Ung et al. (1998) |
Gold nanoshell | Detection of DNA | Thaxton et al. (2005) |
Gold nanoshell | Immunoassay to detect analytes | Hirsch et al. (2003a) |
Nanoshell | To detect cancer cells | Loo et al. (2004) |
Nanoshell | To detect tumors | Hirsch et al. (2003b) |
Silica-silver core-shell particles | To detect antibodies | Kalele et al. (2005) |
Silver nanoshell | To detect microorganisms | Kalele et al. (2006b) |
Silver nanoshells | Detection of toxic ions such as Cd, Hg and Pb present in water | Kalele et al. (2006a) |
Gold nanoshells particles conjugated with enzymes and antibodies embedded in the polymer like Nisopropylacrylamide and acrylamide | Imaging of the diseases | Sparnacci et al. (2002) |
3.6. Quantum dots (QD)
The quantum dots are semiconductor nanocrystals and core-shell nanocrystals containing interface between different semiconductor materials. The size of quantum dots can be continuously tuned from 2 to 10 nm, which, after polymer encapsulation, generally increases to 5–20 nm in diameter. Particles smaller than 5 nm are quickly cleared by renal filtration (Choi et al., 2007a,b). Semiconductor nanocrystals have unique and fascinating optical properties, become an indispensable tool in biomedical research, especially for multiplexed, quantitative and long-term fluorescence imaging and detection (Michalet et al., 2005; Medintz et al., 2005; Alivisatos, 2004; Smith et al., 2006). QD core can serve as the structural scaffold, and the imaging contrast agent and small molecule hydrophobic drugs can be embedded between the inorganic core and the amphiphilic polymer coating layer. Hydrophilic therapeutic agents including small interfering RNA (siRNA) and antisense oligodeoxynucleotide (ODN)) and targeting biomolecules such as antibodies, peptides and aptamers can be immobilized onto the hydrophilic side of the amphiphilic polymer via either covalent or non-covalent bonds. This fully integrated nanostructure may behave like magic bullets that will not only identify, but bind to diseased cells and treat it. It will also emit detectable signals for real-time monitoring of its trajectory (Qi and Gao, 2008). These benefits enable applications of QDs in medical imaging and disease detection (Table 6).
Table 6.
Quantum dot’s composition | Applications | References |
---|---|---|
Quantum dots | For measuring protein conformational changes, monitoring protein interactions, assaying of enzyme activity, in Fluorescence resonance energy transfer (FRET) technologies, particularly when conjugated to biological molecules, including antibodies, for use in immunoassays | Heyduk (2002), Day et al. (2001), Li and Bugg (2004), Kagan et al. (1996), Willard et al. (2001), Wang et al. (2002) Hohng and Ha (2005) |
QD-conjugated oligonucleotide sequences (attached via surface carboxylic acid groups) | Gene technology | Pathak et al. (2001) and Gerion et al. (2002) |
Conjugation of quantum dot with Tat protein, and by encapsulation in cholesterol-bearing pullulan (CHP) modified with amine groups coating with a silica shell | Fluorescent labeling of cellular proteins and different intracellular structures | Hasegawa et al. (2005) and Derfus et al. (2004) |
QDs encapsulated in phospholipid micelles | Cell tracking and color imaging of live cells | Dubertret et al. (2002) and Jaiswal et al. (2003) |
Transferrin-bound QDs, wheat germ agglutinin and transferrin-bound QDs,p53 conjugated with QDs | Pathogen and toxin detection such as Cryptosporidium parvum and Giardia lamblia, Escherichia coli 0157:H7 and Salmonella typhi, Hepatitis B and C viruses and Listeria monocytogenes | Lee et al. (2004), Zhu et al. (2004), Yang and Li (2006), Gerion et al. (2003), Agrawal et al. (2005), Goldman et al. (2002) |
PEG-encapsulated QDs | In vivo animal imaging, Lymph node mapping | Gao et al. (2004), Jakub et al. (2003), Lim et al. (2003) |
Quantum dots | Barriers to use in vivo | Akerman et al. (2002) |
Combination of QD imaging with second-harmonic generation (SHG), CdTe bound QDs | Tumor biology investigation, Cell motility and metastatic potential, measurement of different cancer antigens | Choi et al. (2007), Parak et al. (2002), Ghazani et al. (2006), Williams et al. (2001) |
3.7. Superparamagnetic nanoparticles
Superparamagnetic molecules are those that are attracted to a magnetic field but do not retain residual magnetism after the field is removed. Nanoparticles of iron oxide with diameters in the 5–100 nm range have been used for selective magnetic bioseparations. Typical techniques involve coating the particles with antibodies to cell-specific antigens, for separation from the surrounding matrix.
The main advantages of superparamagnetic nanoparticles are that they can be visualized in magnetic resonance imaging (MRI) due to their paramagnetic properties; they can be guided to a location by the use of magnetic field and heated by magnetic field to trigger the drug release (Irving, 2007).
Superparamagnetic nanoparticles belong to the class of inorganic based particles having an iron oxide core coated by either inorganic materials (silica, gold) and organic (phospholipids, fatty acids, polysaccharides, peptides or other surfactants and polymers) (Gupta and Curtis, 2004; Babic et al., 2008; Euliss et al., 2003). In contrast to other nanoparticles, superparamagnetic nanoparticles based on their inducible magnetization, their magnetic properties allow them to be directed to a defined location or heated in the presence of an externally applied AC magnetic field. These characteristics make them attractive for many applications, ranging from various separation techniques and contrast enhancing agents for MRI to drug delivery systems, magnetic hyperthermia (local heat source in the case of tumor therapy), and magnetically assisted transfection of cells (Horák, 2005; Gupta and Gupta, 2005; Jordan et al., 2001; Neuberger et al., 2005).
Already marketable products, so-called beads, are micron sized polymer particles loaded with SPIONs. Such beads can be functionalized with molecules that allow a specific adsorption of proteins or other biomolecules and subsequent separation in a magnetic field gradient for diagnostic purposes. More interesting applications, like imaging of single cells or tumors, delivery of drugs or genes, local heating and separation of peptides, signaling molecules or organelles from a single living cell or from a living (human) body are still subjects of intensive research. The transdisciplinarity of basic and translational research carried out in superparamagnetic nanoparticles during the last decades lead to a broad field of novel applications for superparamagnetic nanoparticles. There are several potential applications of superparamagnetic nanoparticles some of which are given in Table 7. The following issues are not yet fully understood such as (1) the mechanisms utilized by cells to take up multifunctional SPIONs in human cells in culture, (2) are there membrane molecules involved?, (3) specific adsorption of SPIONs to targeted subcellular components after uptake, transport of drugs, plasmids or other substances to specific cells followed by controlled release, (4) separation of SPIONs from the cells after cell-uptake and specific adsorption to sub cellular components or to biomolecules like proteins without interfering with cell function, (5) prevention of uncontrolled agglomeration of modified SPIONs in physiological liquids, (6) short and long-term impact on cell functions by loading cells of different phenotypes with such nanoparticles (Hofmann-Amtenbrink et al., 2009).
Table 7.
Superparamagnetic nanoparticle’s composition | Applications | References |
---|---|---|
SPIONs coated with organic molecules showing an overall median diameter of less than 50–160 nm | MRI contrast agents for detecting liver tumors | Smith et al. (2007) |
Superparamagnetic iron oxide nanoparticles | Identify dangerous arteriosclerotic plaques by MRI | Zur Mühlen et al. (2007) and Smith et al. (2007) |
Superparamagnetic Iron oxide nanoparticles (SPIONs) coated with polyvinylbenzyl-O-β-d-galactopyranosyl-d-gluconamide (PVLA) with galactose moieties | Liver-targeting MRI contrast agent | Yoo et al. (2007) |
Superparamagnetic iron oxide nanoparticles conjugated to luteinizing hormone releasing hormone (LHRH–SPIONs), | Enhanced MRI contrast in breast cancer xenografts and metastases in the lungs | Meng et al. (2009) |
Superparamagnetic iron oxide nanoparticles | Magnetic particle imaging | Minard (2009) |
Combidex a ultrasmall superparamagnetic iron oxide (USPIO) covered covered dextran | Molecular imaging agent during contrast-enhanced MRI | McIlwain (2008) |
Monocrystalline iron oxide nanoparticles-47 [MION-47] | Measures macrophage burden in atherosclerosis | Morishige et al. (2010) |
Colloidal dispersions of superparamagnetic (subdomain) iron oxide nanoparticles | Magnetic fluid hyperthermia (MFH) in cancer treatment | Jordan et al. (1999) |
Nanosized superparamagnetic nanoparticles (Fe3O4) coated with the multivalent cationic agent, polyethylenimine (PEI) | Purification of plasmid DNA from bacterial cells | Chiang et al. (2005) |
3.8. Dendrimers
Dendrimers are unimolecular, monodisperse, micellar nanostructures, around 20 nm in size, with a well-defined, regularly branched symmetrical structure and a high density of functional end groups at their periphery. The structure of dendrimers consists of three distinct architectural regions as a focal moiety or a core, layers of branched repeat units emerging from the core, and functional end groups on the outer layer of repeat units. They are known to be robust, covalently fixed, three dimensional structures possessing both a solvent-filled interior core (nanoscale container) as well as a homogenous, mathematically defined, exterior surface functionality (Grayson and Frechet, 2001; Svenson and Tomalia, 2005). Dendrimers are generally prepared using either a divergent method or a convergent one (Hodge, 1993) with an architecture like a tree branching out from a central point.
Dendrimeric vectors are most commonly used as parenteral injections, either directly into the tumor tissue or intravenously for systemic delivery (Tomalia et al. 2007). Dendrimers used in drug delivery studies typically incorporate one or more of the following polymers: polyamidoamine (PAMAM), melamine, poly l-glutamic acid (PG), polyethyleneimine (PEI), polypropyleneimine (PPI), and polyethylene glycol (PEG), Chitin. Dendrimers may be used in two major modalities for targeting vectors for diagnostic imaging, drug delivery, gene transfection also detection and therapeutic treatment of cancer and other diseases, namely by (1) passive targeting-nanodimension mediated via EPR (enhanced permeability retention) effect (Matsumura and Maeda, 1986) involving primary tumor vascularization or organ-specific targeting (Kobayashi and Brechbiel, 2003) and (2) active targeting-receptor-mediated cell-specific targeting involving receptor-specific targeting groups (Hofmann-Amtenbrink et al., 2009). There are several potential applications of dendrimers in the field of imaging, drug delivery, gene transfection and non-viral gene transfer. Few applications are enrolled in Table 8.
Table 8.
Dendrimers composition | Drug | Application | References |
---|---|---|---|
PAMAM (polyamidoamine) | Chelated gadolinium | Diagnose certain disorders of the heart, brain and blood vessels | Wiener et al. (1994) |
Poly(l-glutamic acid), polyamidoamine and poly(ethyleneimine) | Folic acid | Breast cancer | Wiener et al. (1997) and Kukowska-Latallo et al. (2005) |
PAMAM | Antibodies specific to CD14 and PSMA | Cell binding and internalization | Thomas et al. (2004) |
PAMAM | Sulfamethoxazole | Strep throat (Streptococcus), staph infection (Staphylococcus aureus), and flu (Haemophilus influenza) | Ma et al. (2007) and Abeylath et al. (2008) |
PAMAM (polyamidoamine) | Nadifloxacin, prulifloxacin, | Various bacteria | Cheng et al. (2007b) |
PAMAM (Polyamidoamine) PPI (polypropyleneimine generation) | Nystatin and Terbinafine | Antifungal against Candida albicans, Aspergillus niger and Sachromyces cerevasae | Khairnar et al. (2010) |
PAMAM (polyamidoamine) | Propranolol | Hypertension | D’Emanuele et al. (2004) |
Polyamidoamine (PAMAM) dendrimers | Niclosmide | Tapeworm | Devarakonda et al. (2005) |
Pegylated lysine based copolymeric dendrimer | Artemether | Plasmodium falciparum | Bhadra et al. (2005) |
PAMAM dendrimers with carboxylic or hydroxyl surface groups | Pilocarpine | Glaucoma | Vandamme and Brobeck (2005) and Tolia et al. (2008) |
PAMAM | Enoxaparin | Pulmonary embolism | Bai et al. (2007) |
PAMAM | Ketoprofen, Diflunisal | Inflammation | Cheng et al. (2007a) |
PAMAM | Indomethacin | Inflammation | Chauhan et al. (2003) |
Polylysine dendrimer | VivaGel (SPL7013 Gel) | HIV, HSV and sexually transmitted infections | Rupp et al. (2007) |
Dendrimer | High resolution X-ray image | Diagnostic tool for arteriosclerotic vasculature, tumors, infarcts, kidneys or efferent urinary | Schumann et al. (2003) |
Dendrimer | Gene transfer of cytokine genes (tumor necrosis factor, interleukin-2, granulocyte-macrophage colony-stimulating factor) | Induce a systemic antitumor immune response against residual tumor cells | Culver (1994) |
PAMAM | 5-Fluorouracil | Tumor | Zhuo et al. (1999) |
Dendrimer | Isotope of boron (10B) | Cancer | Hawthorne (1993) |
4. Conclusion
There is a wide range of nanoparticulate materials and structures being developed for the delivery of therapeutic compounds. Each has its own particular advantages, but as these nanoparticles become optimized for their specific application, the outcome will be better-controlled therapy as a result of targeted delivery of smaller amounts of effective drugs to the required sites in the body. This is being made possible through the use of advanced material, improved control of particle size, and better understanding of interface between the biological and material surfaces, and their effects in vivo. Some nanoparticle based products are already approved by the US FDA, several others are currently under development and clinical assessment.
Acknowledgements
C.B. thanks Dr. B. Ramesh, Principal, S.A.C. College of Pharmacy, B.G. Nagara, for providing digital library for referencing and also thanks to Dr. V. Jaishree, Dr. N.K. Sathish and Dr. Md. Gulzar Ahmed for their valuable discussion.
References
- Abeylath S.C., Turos E., Dickey S., Lim D.V. Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg. Med. Chem. 2008;16(5):2412–2418. doi: 10.1016/j.bmc.2007.11.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abhilash M. Potential applications of Nanoparticles. Int. J. Pharm.Bio Sci. 2010;1(1):1–12. [Google Scholar]
- Agrawal A., Tripp R.A., Anderson L.J., Nie S.M. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J. Virol. 2005;79(13):8625–8628. doi: 10.1128/JVI.79.13.8625-8628.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akerman M.E., Chan W.C.W., Laakkonen P., Bhatia S.N., Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA. 2002;99(20):12617–12621. doi: 10.1073/pnas.152463399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alivisatos P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004;22(1):47–52. doi: 10.1038/nbt927. [DOI] [PubMed] [Google Scholar]
- Azzam T., Domb A.J. Current developments in gene transfection agents. Curr. Drug Deliv. 2004;1(2):165–193. doi: 10.2174/1567201043479902. [DOI] [PubMed] [Google Scholar]
- Babic M., Horák D., Trchová M., Jendelová P., Glogarová K., Lesný P., Herynek V., Hájek M., Syková E. Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug. Chem. 2008;19(3):740–750. doi: 10.1021/bc700410z. [DOI] [PubMed] [Google Scholar]
- Bai S., Thomas C., Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low molecular weight heparin. J. Pharm. Sci. 2007;96(8):2090–2106. doi: 10.1002/jps.20849. [DOI] [PubMed] [Google Scholar]
- Bhadra D., Bhadra S., Jain N.K. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J. Pharm. Pharm. Sci. 2005;8(3):467–482. [PubMed] [Google Scholar]
- Bhalekar M.R., Pokharkar V., Madgulkar A., Patil N., Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS Pharm. Sci. Tech. 2009;10(1):289–296. doi: 10.1208/s12249-009-9199-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhaskar K., Anbu J., Ravichandiran V., Venkateswarlu V., Rao Y.M. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis. 2009;8:6. doi: 10.1186/1476-511X-8-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brettreich M., Hirsch A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 1998;39(18):2731–2734. [Google Scholar]
- Buzea C., Pacheco I., Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. [DOI] [PubMed] [Google Scholar]
- Cavalli R., Caputo O., Gasco M.R. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 1993;89(1):R9–R12. [Google Scholar]
- Cavalli R., Morel S., Gasco M.R., Chetoni P., Saettone M.F. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm. 1995;117(2):243–246. [Google Scholar]
- Cavalli R., Gasco M.R., Chetoni P., Burgalassi S., Saettone M.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 2002;238(1–2):241–245. doi: 10.1016/s0378-5173(02)00080-7. [DOI] [PubMed] [Google Scholar]
- Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Career Syst. 1996;13(3–4):257–388. doi: 10.1615/critrevtherdrugcarriersyst.v13.i3-4.30. [DOI] [PubMed] [Google Scholar]
- Chauhan A.S., Sridevi S., Chalasani K.B., Jain A.K., Jain S.K., Jain N.K., Diwan P.V. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J. Control Rel. 2003;90(3):335–343. doi: 10.1016/s0168-3659(03)00200-1. [DOI] [PubMed] [Google Scholar]
- Chen Y., McCulloch R.K., Gray B.N. Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anti-cancer drug doxorubicin. J. Control Rel. 1994;31(1):49–54. [Google Scholar]
- Cheng Y., Man N., Xu T., Fu R., Wang X., Wang X., Wen L. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 2007;96(3):595–602. doi: 10.1002/jps.20745. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Qu H., Ma M., Xu Z., Xu P., Fang Y., Xu T. Polyamidoamine (PAMAM) dendrimers as biocompatible carries of quinolone antimicrobials: an in vitro study. Eur. J. Med. Chem. 2007;42(7):1032–1038. doi: 10.1016/j.ejmech.2006.12.035. [DOI] [PubMed] [Google Scholar]
- Chiang C.L., Sung C.S., Wu T.F., Chen C.Y., Hsu C.Y. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells. J. Chromat. B. 2005;822(1–2):54–60. doi: 10.1016/j.jchromb.2005.05.017. [DOI] [PubMed] [Google Scholar]
- Choi A.O., Cho S.J., Desbarats J., Lovric J., Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J. Nanobiotechnol. 2007;5:1–4. doi: 10.1186/1477-3155-5-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi H.S., Liu W., Misra P., Tanaka E., Zimmer J.P., Ipe B.I., Bawendi M.G., Frangion J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25(10):1165–1170. doi: 10.1038/nbt1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Culver K.W. Clinical applications of gene therapy for cancer. Clin. Chem. 1994;40(4):510–512. [PubMed] [Google Scholar]
- Davies R., Schurr G.A., Meenam P., Nelson R.D., Bergna H.E., Brevett C.A.S., Goldbaum R.H. Engineered particle surfaces. Adv. Mater. 1998;10(15):1264–1270. [Google Scholar]
- Day R.N., Periasamy A., Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001;25(1):4–18. doi: 10.1006/meth.2001.1211. [DOI] [PubMed] [Google Scholar]
- D’Emanuele A., Jevprasesphant R., Penny J., Atwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and oral bioavailability. J. Control. Release. 2004;95(3):447–453. doi: 10.1016/j.jconrel.2003.12.006. [DOI] [PubMed] [Google Scholar]
- Derfus A.M., Chan W.C.W., Bhatia S.N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 2004;16(12):961–966. [Google Scholar]
- Devarakonda B., Hill R.A., Liebenberg W., Brits M., de Villiers M.M. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm. 2005;304(1–2):193–209. doi: 10.1016/j.ijpharm.2005.07.023. [DOI] [PubMed] [Google Scholar]
- Di Paolo D., Loi M., Pastorino F., Brignole C., Marimpietri D., Becherini P., Caffa I., Zorzoli A., Longhi R., Gagliani C., Tacchetti C., Corti A., Allen T.M., Ponzoni M., Pagnan G. Liposome-mediated therapy of neuroblastoma. Methods Enzymol. 2009;465:225–249. doi: 10.1016/S0076-6879(09)65012-6. [DOI] [PubMed] [Google Scholar]
- Doktorovová S., Araújo J., Garcia M.L., Rakovský E., Souto E.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC) Colloids Surf. B: Biointerf. 2010;75(2):538–542. doi: 10.1016/j.colsurfb.2009.09.033. [DOI] [PubMed] [Google Scholar]
- Domb A.J. Liposphere parenteral delivery system. Proc. Intl. Symp. Control Rel. Bioact. Mater. 1993;20:346–347. [Google Scholar]
- Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–1762. doi: 10.1126/science.1077194. [DOI] [PubMed] [Google Scholar]
- Dugan L.L., Turetsky D.M., Du C., Lobner D., Wheeler M., Almli C.R., Shen C.K., Luh T.Y., Choi D.W., Lin T.S. Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA. 1997;94(17):9434–9439. doi: 10.1073/pnas.94.17.9434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eldem T., Speiser P., Hincal A. Optimization of spray-dried and congealed lipid microparticles and characterization of their surface morphology by scanning electron microscopy. Pharm. Res. 1991;8:47–54. doi: 10.1023/a:1015874121860. [DOI] [PubMed] [Google Scholar]
- Euliss L.E., Grancharov S.G., O’Brien S., Deming T.J., Stucky G.D., Murray C.B., Held G.A. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media. Nano Lett. 2003;3(11):1489–1493. [Google Scholar]
- Fielding R.M., Lewis R.O., Moon-McDermott L. Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome) Pharm. Res. 1998;15(11):1775–1781. doi: 10.1023/a:1011925132473. [DOI] [PubMed] [Google Scholar]
- Fontana G., Maniscalco L., Schillaci D., Cavallaro G., Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv. 2005;12(6):385–392. doi: 10.1080/10717540590968855. [DOI] [PubMed] [Google Scholar]
- Freitas C., Müller R.H. Spray-drying of Solid lipid nanoparticles (SLNTM) Eur. J. Pharm. Biopharm. 1998;46(2):145–151. doi: 10.1016/s0939-6411(97)00172-0. [DOI] [PubMed] [Google Scholar]
- Friedman S.H., DeCamp D.L., Sijbesma R.P., Srdanov G., Wudl F., Kenyon G.L. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 1993;115(15):6506–6509. [Google Scholar]
- Gangadharam P.R., Ashtekar D.A., Ghori N., Goldstein J.A., Debs R.J., Duzgunes N. Chemotherapeutic potential of free and liposome encapsulated streptomycin against experimental Mycobacterium avium complex infections in beige mice. J. Antimicrob. Chemother. 1991;28(3):425–435. doi: 10.1093/jac/28.3.425. [DOI] [PubMed] [Google Scholar]
- Gao X.H., Cui Y.Y., Levenson R.M., Chung L.W.K., Nie S.M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004;22:969–976. doi: 10.1038/nbt994. [DOI] [PubMed] [Google Scholar]
- Gerion D., Parak W.J., Williams S.C., Zanchet D., Micheel C.M., Alivisatos A.P. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 2002;124(24):7070–7074. doi: 10.1021/ja017822w. [DOI] [PubMed] [Google Scholar]
- Gerion D., Chen F.Q., Kannan B., Fu A.H., Parak W.J., Chen D.J., Majumdar A., Alivisatos A.P. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 2003;75(18):4766–4772. doi: 10.1021/ac034482j. [DOI] [PubMed] [Google Scholar]
- Ghazani A.A., Lee J.A., Klostranec J., Xiang Q., Dacosta R.S., Wilson B.C., Tsao M.S., Chan W.C. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Lett. 2006;6(12):2881–2886. doi: 10.1021/nl062111n. [DOI] [PubMed] [Google Scholar]
- Goldman E.R., Anderson G.P., Tran P.T., Mattoussi H., Charles P.T., Mauro J.M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 2002;74(4):841–847. doi: 10.1021/ac010662m. [DOI] [PubMed] [Google Scholar]
- Grayson S.M., Frechet J.M. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 2001;101(12):3819–3868. doi: 10.1021/cr990116h. [DOI] [PubMed] [Google Scholar]
- Gupta A.K., Curtis A.S.G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004;25(15):3029–3040. doi: 10.1016/j.biomaterials.2003.09.095. [DOI] [PubMed] [Google Scholar]
- Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. [DOI] [PubMed] [Google Scholar]
- Hasegawa U., Nomura S.I.M., Kaul S.C., Hirano T., Akiyoshi K. Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem. Biophys. Res. Commun. 2005;331(4):917–921. doi: 10.1016/j.bbrc.2005.03.228. [DOI] [PubMed] [Google Scholar]
- Hawthorne M.F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem. 1993;32(7):950–984. [Google Scholar]
- Hentschel A., Gramdorf S., Müller R.H., Kurz T. Beta-carotene-loaded nanostructured lipid carriers. J. Food Sci. 2008;73(2):1–6. doi: 10.1111/j.1750-3841.2007.00641.x. [DOI] [PubMed] [Google Scholar]
- Heyduk T. Measuring protein conformational changes by FRET/ LRET. Curr. Opin. Biotechnol. 2002;13(4):292–296. doi: 10.1016/s0958-1669(02)00332-4. [DOI] [PubMed] [Google Scholar]
- Hirsch L.R., Jackson J.B., Lee A., Halas N.J., West J.L. A whole blood immunoassay using gold nanoshells. Anal. Chem. 2003;75(10):2377–2381. doi: 10.1021/ac0262210. [DOI] [PubMed] [Google Scholar]
- Hirsch L.R., Stafford R.J., Bankson J.A., Sreshen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guide. Proc. Natl. Acad. Sci. USA. 2003;100(23):13549–13554. doi: 10.1073/pnas.2232479100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodge P. Polymer science branches out. Nature. 1993;362:18–19. [Google Scholar]
- Hofmann-Amtenbrink, M., von Rechenberg, B., Hofmann, H., 2009. Superparamagnetic nanoparticles for biomedical applications. In: Nanostructured Materials for Biomedical Applications. Transworld Research Network, Kearala, India, pp. 119–149.
- Hohng S., Ha T. Single-molecule quantum-dot fluorescence resonance energy transfer. Chemphyschem. 2005;6(5):956–960. doi: 10.1002/cphc.200400557. [DOI] [PubMed] [Google Scholar]
- Holister, P., Cristina, R.V., Fullerenes, H.T., 2003. Nanoparticles, Technology White papers nr. 3, Cientifica 1–12.
- Horák D. Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polym. 2005;46(4):1245–1255. [Google Scholar]
- Hu F.Q., Jiang S.P., Du Y.Z., Yuan H., Ye Y.Q., Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 2006;314(1):83–89. doi: 10.1016/j.ijpharm.2006.01.040. [DOI] [PubMed] [Google Scholar]
- Huang Y.L., Shen C.K.F., Luh T.Y., Yang H.C., Hwang K.C., Chou C.K. Blockage of apoptotic signaling of transforming growth factor-β in human hepatoma cells by carboxyfullerene. Eur. J. Biochem. 1998;254:38–43. doi: 10.1046/j.1432-1327.1998.2540038.x. [DOI] [PubMed] [Google Scholar]
- Irving B. Nanoparticle drug delivery systems. Inno. Pharm. Biotechnol. 2007;24:58–62. [Google Scholar]
- Jain D., Banerjee R. Comparison of ciprofloxacin hydrochlorideloaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. B. Appl. Biomater. 2008;86(1):105–112. doi: 10.1002/jbm.b.30994. [DOI] [PubMed] [Google Scholar]
- Jain A., Jain S.K., Ganesh N., Barve J., Beg A.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomed. 2009;6(1):179–190. doi: 10.1016/j.nano.2009.03.002. [DOI] [PubMed] [Google Scholar]
- Jain P., Mishra A., Yadav S.K., Patil U.K., Baghel U.S. Formulation development and characterization of solid lipid nanoparticles containing nimesulide. Int. J. Drug Deliver Technol. 2009;1(1):24–27. [Google Scholar]
- Jaiswal J.K., Mattoussi H., Mauro J.M., Simon S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2003;21(1):47–51. doi: 10.1038/nbt767. [DOI] [PubMed] [Google Scholar]
- Jakub J.W., Pendas S., Reintgen D.S. Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist. 2003;8(1):59–68. doi: 10.1634/theoncologist.8-1-59. [DOI] [PubMed] [Google Scholar]
- Jenning V., Gysler A., Schafer-Korting M., Gohla S. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 2000;49(3):211–218. doi: 10.1016/s0939-6411(99)00075-2. [DOI] [PubMed] [Google Scholar]
- Jordan A., Scholz R., Wust P., Fähling H., Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 1999;201(1–3):413–419. [Google Scholar]
- Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S., Lanksch W., Felix R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 2001;225(1–2):118–126. [Google Scholar]
- Kaesermann F., Kempf C. Photodynamic inactivation of enveloped viruses by buckminsterfullerene. Antiviral Res. 1997;34(1):65–70. doi: 10.1016/s0166-3542(96)01207-7. [DOI] [PubMed] [Google Scholar]
- Kagan C.R., Murray C.B., Nirmal M., Bawendi M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996;76(9):1517–1520. doi: 10.1103/PhysRevLett.76.1517. [DOI] [PubMed] [Google Scholar]
- Kalele S.A., Ashtaputre S.S., Hebalkar N.Y., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Kulkarni S.K. Optical detection of antibody using silica–silver core-shell particles. Chem. Phys. Lett. 2005;404(1–3):136–141. [Google Scholar]
- Kalele S.A., Gosavi S.W., Urban J., Kulkarni S.K. Nanoshell particles: synthesis, properties and applications. Curr. Sci. 2006;91(8):1038–1052. [Google Scholar]
- Kalele S.A., Kundu A.A., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Kulkarni S.K. Rapid detection of Echerischia coli using antibody conjugated silver nanoshells. Small. 2006;2(3):335–338. doi: 10.1002/smll.200500286. [DOI] [PubMed] [Google Scholar]
- Kaur C.D., Nahar M., Jain N.K. Lymphatic targeting of zidovudine using surface-engineered liposomes. J. Drug Target. 2008;16(10):798–805. doi: 10.1080/10611860802475688. [DOI] [PubMed] [Google Scholar]
- Khairnar G.A., Chavan-Patil A.B., Palve P.R., Bhise S.B., Mourya V.K., Kulkarni C.G. Dendrimers: potential tool for enhancement of antifungal activity. Int. J. Pharm. Tech. Res. 2010;2(1):736–739. [Google Scholar]
- Kim H.J., Jones M.N. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J. Liposome Res. 2004;14(3–4):123–139. doi: 10.1081/lpr-200029887. [DOI] [PubMed] [Google Scholar]
- Kobayashi H., Brechbiel M.W. Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol. Imaging. 2003;2(1):1–10. doi: 10.1162/15353500200303100. [DOI] [PubMed] [Google Scholar]
- Kotelnikova R.A., Bogdanov G.N., Frog E.C., Kotelnikov A.I., Shtolko V.N., Romanova V.S., Andreev S.M., Kushch A.A., Fedorva N.E., Medzhidova A.A., Miller G.G. Nanobionics of pharmacologically active derivatives of fullerene C60. J. Nanoparticle Res. 2003;5:561–566. [Google Scholar]
- Krusic P.J., Wasserman E., Keizer P.N., Morton J.R., Preston K.F. Radical reactions of C60. Science. 1991;254(5035):1183–1185. doi: 10.1126/science.254.5035.1183. [DOI] [PubMed] [Google Scholar]
- Kukowska-Latallo J.F., Candido K.A., Cao Z., Nigavekar S.S., Majoros I.J., Thomas T.P., Balogh L.P., Khan M.K., Baker J.R. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317–5324. doi: 10.1158/0008-5472.CAN-04-3921. [DOI] [PubMed] [Google Scholar]
- Lee L.Y., Ong S.L., Hu J.Y., Ng W.J., Feng Y.Y., Tan X., Wong S.W. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl. Environ. Microbiol. 2004;70(10):5732–5736. doi: 10.1128/AEM.70.10.5732-5736.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J.J., Bugg T.D. A fluorescent analogue of UDP-N-acetylglucosamine: application for FRET assay of peptidoglycan translocase II (MurG) Chem. Commun. 2004;2:182–183. doi: 10.1039/b313316h. [DOI] [PubMed] [Google Scholar]
- Lim Y.T., Kim S., Nakayama A., Stott N.E., Bawendi M.G., Frangioni J.V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging. 2003;2(1):50–64. doi: 10.1162/15353500200302163. [DOI] [PubMed] [Google Scholar]
- Liz-Marzan L.M., Correa-Duarte M.A., Pastoriza-Santos I., Mulvaney P., Ung T., Giersig M., Kotov N.A. Core-shell and assemblies thereof. In: Nalwa H.S., editor. Hand Book of Surfaces and Interfaces of Materials. Elsevier; Amsterdam, Netherlands: 2001. pp. 189–237. [Google Scholar]
- Loo C., Lin A., Hirsch L., Lee M., Barton J., Halas N., West J., Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 2004;3(1):33–40. doi: 10.1177/153303460400300104. [DOI] [PubMed] [Google Scholar]
- Ma M., Cheng Y., Xu Z., Xu P., Qu H., Fang Y., Xu T., Wen L. Evaluation of Polyamidoamine (PAMAM) dendrimers as drug carriers of antibacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J. Med. Chem. 2007;42(1):93–98. doi: 10.1016/j.ejmech.2006.07.015. [DOI] [PubMed] [Google Scholar]
- Magallanes M., Dijkstra J., Fierer J. Liposome-incorporated ciprofloxacin in treatment of murine salmonellosis. Antimicrob. Agents Chemother. 1993;37(11):2293–2297. doi: 10.1128/aac.37.11.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchesan S., Da Ros T., Spalluto G., Balzarini J., Prato M. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett. 2005;15(15):3615–3618. doi: 10.1016/j.bmcl.2005.05.069. [DOI] [PubMed] [Google Scholar]
- Mashino T., Shimotohno K., Ikegami N., Nishikawa D., Okuda K., Takahashi K., Nakamura S., Mochizuki M. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 2005;15(4):1107–1109. doi: 10.1016/j.bmcl.2004.12.030. [DOI] [PubMed] [Google Scholar]
- Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12):6387–6392. [PubMed] [Google Scholar]
- McIlwain C.C. Elsevier; Amsterdam, Netherlands: 2008. XPharm: The Comprehensive Pharmacology. pp. 1–5. [Google Scholar]
- Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 2005;4(6):435–446. doi: 10.1038/nmat1390. [DOI] [PubMed] [Google Scholar]
- Mehnert W., Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliver Rev. 2001;47(2–3):165–196. doi: 10.1016/s0169-409x(01)00105-3. [DOI] [PubMed] [Google Scholar]
- Meng J., Fan J., Galiana G., Branca R.T., Clasen P.L., Ma S., Zhou J., Leuschner C., Kumar C.S.S.R., Hormes J., Otiti T., Beye A.C., Harmer M.P., Kiely C.J., Warren W., Haataja M.P., Soboyejo W.O. LHRH-functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Mat. Sci. Eng. C. 2009;29(4):1467–1479. [Google Scholar]
- Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–544. doi: 10.1126/science.1104274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mimoso I.M., Francisco A.P.G., Cruz M.E.M. Liposomal formulation of netilmicin. Int. J. Pharm. 1997;147(1):109–117. [Google Scholar]
- Minard K.R. second ed. Elsevier; Amsterdam, Netherlands: 2009. Magnetic Particle Imaging. Encyclopedia of Spectroscopy and Spectrometry. pp. 1426–1434. [Google Scholar]
- Mitchell D.R., Brown R.M., Jr., Spires T.L., Romanovicz D.K., Lagow R.J. The synthesis of megatubes: new dimensions in carbon materials. Inorg. Chem. 2001;40(12):2751–2755. doi: 10.1021/ic000551q. [DOI] [PubMed] [Google Scholar]
- Mohanraj V.J., Chen Y. Nanoparticles: a review. Trop. J. Pharm. Res. 2006;5(1):561–573. [Google Scholar]
- Morishige K., Kacher D.F., Libby P., Josephson L., Ganz P., Weissleder R., Aikawa M. High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation. 2010;122(17):1707–1715. doi: 10.1161/CIRCULATIONAHA.109.891804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller R.H., Runge S.A. Solid lipid nanoparticles (SLN) for controlled drug delivery. In: Benita S., editor. Submicron Emulsions in Drug Targeting and Delivery. Harwood Academic Publishers; Amsterdam: 1998. pp. 219–234. [Google Scholar]
- Müller R.H., Maabenb S., Weyhersa H., Spechtb F., Lucksb J.S. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int. J. Pharm. 1996;138(1):85–94. [Google Scholar]
- Müller R.H., Mader K., Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm. 2000;50(1):161–177. doi: 10.1016/s0939-6411(00)00087-4. [DOI] [PubMed] [Google Scholar]
- Müller R.H., Radtke M., Wissing S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliver. Rev. 2002;54:S131–S155. doi: 10.1016/s0169-409x(02)00118-7. [DOI] [PubMed] [Google Scholar]
- Neuberger T., Schöpf B., Hofmann H., Hofmann M., von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 2005;293(1):483–496. [Google Scholar]
- Oldenberg S.J., Averitt R.D., Westcott S.L., Halas N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 1998;288(2–4):243–247. [Google Scholar]
- Omri A., Suntres Z.E., Shek P.N. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem. Pharmacol. 2002;64(9):1407–1413. doi: 10.1016/s0006-2952(02)01346-1. [DOI] [PubMed] [Google Scholar]
- Onyeji C.O., Nightingale C.H., Marangos M.N. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection. 1994;22(5):338–342. doi: 10.1007/BF01715542. [DOI] [PubMed] [Google Scholar]
- Pandey R., Khuller G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005;85(4):227–234. doi: 10.1016/j.tube.2004.11.003. [DOI] [PubMed] [Google Scholar]
- Panga X., Cui F., Tian J., Chen J., Zhou J., Zhou W. Preparation and characterization of magnetic solid lipid nanoparticles loaded with ibuprofen. Asian J. Pharm. Sci. 2009;4(2):132–137. [Google Scholar]
- Parak W.J., Boudreau R., Le Gros M., Gerion D., Zanchet D., Micheel C.M., Williams S.C., Alivisatos A.P., Larabell C.A. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 2002;14(12):882–885. [Google Scholar]
- Park J.W. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95–99. doi: 10.1186/bcr432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pathak S., Choi S.K., Arnheim N., Thompson M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 2001;123(17):4103–4104. doi: 10.1021/ja0058334. [DOI] [PubMed] [Google Scholar]
- Qi L., Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv. 2008;5(3):63–67. doi: 10.1517/17425247.5.3.263. [DOI] [PubMed] [Google Scholar]
- Radtke M., Müller R.H. Novel concept of topical cyclosporine delivery with supersaturated SLN™ creams. Int. Symp. Control Rel. Bioact. Mater. 2001;28:470–471. [Google Scholar]
- Ruckmani K., Sivakumar M., Ganeshkumar P.A. Methotrexate loaded solid lipid nanoparticles (SLN) for effective treatment of carcinoma. J. Nanosci. Nanotechnol. 2006;6(9–10):2991–2995. doi: 10.1166/jnn.2006.457. [DOI] [PubMed] [Google Scholar]
- Rupp R., Rosenthal S.L., Stanberry L.R. VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007;2(4):561–566. [PMC free article] [PubMed] [Google Scholar]
- Sanna V., Gavini E., Cossu M., Rassu G., Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J. Pharm. Pharmacol. 2007;59(8):1057–1064. doi: 10.1211/jpp.59.8.0002. [DOI] [PubMed] [Google Scholar]
- Sano N., Wang H., Chhowalla M., Alexandrou I., Amaratunga G.A.J. Synthesis of carbon ‘onions’ in water. Nature. 2001;414(6863):506–507. doi: 10.1038/35107141. [DOI] [PubMed] [Google Scholar]
- Sarmento B., Martins S., Ferreira D., Souto E.B. Oral insulin delivery by means of solid lipid Nanoparticles. Int. J. Nanomed. 2007;2(4):743–749. [PMC free article] [PubMed] [Google Scholar]
- Schiffelers R., Storm G., Bakker-Woudenberg I. Liposomeencapsulated aminoglycosides in pre-clinical and clinical studies. J. Antimicrob. Chemother. 2001;48(3):333–344. doi: 10.1093/jac/48.3.333. [DOI] [PubMed] [Google Scholar]
- Schumacher I., Margalit R. Liposome-encapsulated ampicillin: physicochemical and antibacterial properties. J. Pharm. Sci. 1997;86(5):635–641. doi: 10.1021/js9503690. [DOI] [PubMed] [Google Scholar]
- Schumann H., Wassermann B.C., Schutte S., Velder J., Aksu Y., Krause W. Synthesis and characterization of water-soluble tin-based metallodendrimers. Organometallics. 2003;22(10):2034–2041. [Google Scholar]
- Schuster D.I., Wilson S.R., Kirschner A.N., Schinazi R.F., Schluter-Wirtz S., Tharnish P., Barnett T., Ermolieff J., Tang J., Brettreich M., Hirsch A. Evaluation of the anti-HIV potency of a water-soluble dendrimeric fullerene. Proc. Electrochem. Soc. 2000;9:267–270. [Google Scholar]
- Serpe L., Catalano M.G., Cavalli R., Ugazio E., Bosco O., Canaparo R., Muntoni E., Frairia R., Gasco M.R., Eandi M., Zara G.P. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur. J. Pharm. Biopharm. 2004;58(3):673–680. doi: 10.1016/j.ejpb.2004.03.026. [DOI] [PubMed] [Google Scholar]
- Sijbesma R., Srdanov G., Wudl F., Castoro J.A., Wilkins C., Friedman S.H., DeCamp D.L., Kenyon G.L. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J. Am. Chem. Soc. 1993;115(15):6510–6512. [Google Scholar]
- Silva A.C., Santos D., Ferreira D.C., Souto E.B. Minoxidil-loaded nanostructured lipid carriers (NLC): characterization and rheological behaviour of topical formulations. Pharmazie. 2009;64(3):177–182. [PubMed] [Google Scholar]
- Slater T.F., Cheeseman K.H., Ingold K.U. Carbon tetrachloride toxicity as a model for studying free-radical mediated liver injury. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 1985;311(1152):633–645. doi: 10.1098/rstb.1985.0169. [DOI] [PubMed] [Google Scholar]
- Smith A.M., Dave S., Nie S., True L., Gao X. Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diag. 2006;6(2):231–244. doi: 10.1586/14737159.6.2.231. [DOI] [PubMed] [Google Scholar]
- Smith B.R., Heverhagen J., Knopp M., Schmalbrock P., Shapiro J., Shiomi M., Moldovan N.I., Ferrari M., Lee S.C. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI) Biomed. Microdevices. 2007;9(5):719–727. doi: 10.1007/s10544-007-9081-3. [DOI] [PubMed] [Google Scholar]
- Souto E.B., Müller R.H. SLN and NLC for topical delivery of ketoconazole. J. Microencapsul. 2005;22(5):501–510. doi: 10.1080/02652040500162436. [DOI] [PubMed] [Google Scholar]
- Souto E.B., Wissing S.A., Barbosa C.M., Müller R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 2004;278(1):71–77. doi: 10.1016/j.ijpharm.2004.02.032. [DOI] [PubMed] [Google Scholar]
- Spangler R.S. Insulin administration via liposomes. Diabetes Care. 1990;13(9):911–922. doi: 10.2337/diacare.13.9.911. [DOI] [PubMed] [Google Scholar]
- Sparnacci K., Laus M., Tondelli L., Magnani L., Bernardi C. Core-shell microspheres by dispersion polymerization as drug delivery systems. Macromol. Chem. Phys. 2002;203(10–11):1364–1369. [Google Scholar]
- Speiser, P., 1990. Lipidnanopellets als Tragersystem fur Arzneimittel zur perolen Anwendung. European Patent, EP 0167825.
- Storni T., Kündig T.M., Senti G., Johansen P. Immunity in response to particulate antigen-delivery systems. Adv. Drug Deliv. Rev. 2005;57(3):333–355. doi: 10.1016/j.addr.2004.09.008. [DOI] [PubMed] [Google Scholar]
- Svenson S., Tomalia D.A. Dendrimers in biomedical applications – reflections on the field. Adv. Drug Deliv. Rev. 2005;57(15):2106–2129. doi: 10.1016/j.addr.2005.09.018. [DOI] [PubMed] [Google Scholar]
- Takemoto K., Yamamoto Y., Ueda Y., Sumita Y., Yoshida K., Niki Y. Comparative studies on the efficacy of AmBisome and Fungizone in a mouse model of disseminated aspergillosis. J. Antimicrob. Chemother. 2004;53(2):311–317. doi: 10.1093/jac/dkh055. [DOI] [PubMed] [Google Scholar]
- Tamber H., Johansen P., Merkle H.P., Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug Deliv. Rev. 2005;57(3):357–376. doi: 10.1016/j.addr.2004.09.002. [DOI] [PubMed] [Google Scholar]
- Templeton A.C., Wuelfing W.P., Murray R.W. Monolayer-protected cluster molecules. Acc. Chem. Res. 2000;33(1):27–36. doi: 10.1021/ar9602664. [DOI] [PubMed] [Google Scholar]
- Thaxton C.S., Rosi N.L., Mirkin C.A. Optically and chemically encoded nanoparticle materials for DNA and protein detection. MRS Bull. 2005;30(5):376–380. [Google Scholar]
- Thomas T.P., Patri A.K., Myc A., Myaing M.T., Ye J.Y., Norris T.D., Baker J.R. In vitro targeting of synthesized antibody–conjugated dendrimer nanoparticles. Biomacromolecules. 2004;5(6):2269–2274. doi: 10.1021/bm049704h. [DOI] [PubMed] [Google Scholar]
- Thrash T.P., Cagle D.W., Alford J.M., Ehrhardt G.J., Wright K., Mirzadeh S., Wilson L.J. Toward fullerene-based radiopharmaceuticals: high-yield neutron activation of endohedral 165Ho metallofullerenes. Chem. Phys. Lett. 1999;308(3–4):329–336. [Google Scholar]
- Tolia G.T., Choi H.H., Ahsan F. The role of dendrimers in topical drug delivery. Pharm. Tech. 2008;32(11):88–98. [Google Scholar]
- Tomalia D.A., Reyna L.A., Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 2007;35(1):61–67. doi: 10.1042/BST0350061. [DOI] [PubMed] [Google Scholar]
- Ung T., Liz-Marzan L.M., Mulvaney P. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir. 1998;14:3740–3748. [Google Scholar]
- Vandamme T.F., Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Contr. Rel. 2005;102(1):23–38. doi: 10.1016/j.jconrel.2004.09.015. [DOI] [PubMed] [Google Scholar]
- Vemuri S., Rhodes C.T. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm. Acta Helv. 1995;70(2):95–111. doi: 10.1016/0031-6865(95)00010-7. [DOI] [PubMed] [Google Scholar]
- Venkateswarlu V., Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control Release. 2004;95(3):627–638. doi: 10.1016/j.jconrel.2004.01.005. [DOI] [PubMed] [Google Scholar]
- Wang S., Mamedova N., Kotov N.A., Chen W., Studer J. Antigen antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2002;2(8):817–822. [Google Scholar]
- Whitemore, M., Li, S., Huang, L., 2001. Liposome vectors for in vivo gene delivery. Curr. Protoc. Hum. Genet. 12.8.1–12.8.9. [DOI] [PubMed]
- Wiener E.C., Brechbiel M.W., Brothers H., Magin R.L., Gansow O.A., Tomalia D.A., Lauterbur P.C. Dendrimer-based metal chelates: a new class of MRI contrast agents. Magn. Reson. Med. 1994;31(1):1–8. doi: 10.1002/mrm.1910310102. [DOI] [PubMed] [Google Scholar]
- Wiener E.C., Konda S., Shadron A., Brechbiel M., Gansow O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest. Radiol. 1997;32(12):748–754. doi: 10.1097/00004424-199712000-00005. [DOI] [PubMed] [Google Scholar]
- Willard D.M., Carillo L.L., Jung J., Van Orden A. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein–protein binding assay. Nano Lett. 2001;1(9):469–474. [Google Scholar]
- Williams R.M., Zipfel W.R., Webb W.W. Multiphoton microscopy in biological research. Curr. Opin. Chem. Biol. 2001;5(5):603–608. doi: 10.1016/s1367-5931(00)00241-6. [DOI] [PubMed] [Google Scholar]
- Wissing S.A., Kayser O., Müller R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 2004;56(9):1257–1272. doi: 10.1016/j.addr.2003.12.002. [DOI] [PubMed] [Google Scholar]
- Wong H.L., Rauth A.M., Bendayan R.A., Manias J.L., Ramaswamy M., Liu Z., Erhan S.Z., Wu X.Y. New polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 2006;23(7):1574–1585. doi: 10.1007/s11095-006-0282-x. [DOI] [PubMed] [Google Scholar]
- Xia Y., Gates B., Yin Y., Lu Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 2000;12(10):693–713. [Google Scholar]
- Yang L.J., Li Y.B. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst. 2006;131(3):394–401. doi: 10.1039/b510888h. [DOI] [PubMed] [Google Scholar]
- Yang S.C., Lu L.F., Cai Y., Zhu J.B., Liang B.W., Yang C.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Contr. Rel. 1999;59(3):299–307. doi: 10.1016/s0168-3659(99)00007-3. [DOI] [PubMed] [Google Scholar]
- Yoo M.K., Kim I.Y., Kim E.M., Jeong H.J., Lee C.M., Jeong Y.Y., Akaike T., Cho C.S. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. J. Biomed. Biotechnol. 2007;10:94740. doi: 10.1155/2007/94740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuki Y., Kiyono H. New generation of mucosal adjuvants for the induction of protective immunity. Rev. Med. Virol. 2003;13(5):293–310. doi: 10.1002/rmv.398. [DOI] [PubMed] [Google Scholar]
- Zhang L., Granick S. How to stabilize phospholipid liposomes (using nanoparticles) Nano Lett. 2006;6(4):694–698. doi: 10.1021/nl052455y. [DOI] [PubMed] [Google Scholar]
- Zhang L., Pornpattananangkul D., Hu C.M.J., Huang C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 2010;17(6):585–594. doi: 10.2174/092986710790416290. [DOI] [PubMed] [Google Scholar]
- Zhu L., Ang S., Liu W.T. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl. Environ. Microbiol. 2004;70(1):597–598. doi: 10.1128/AEM.70.1.597-598.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhuo R.X., Du B., Lu Z.R. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J. Contr. Rel. 1999;57(3):249–257. doi: 10.1016/s0168-3659(98)00120-5. [DOI] [PubMed] [Google Scholar]
- zur Mühlen, A., 1996. Feste Lipid-Nanopartikel mit prolongierter Wirkstoffliberation: Herstellung, Langzeitstabilitat, Charakterisierung, Freisetzungsverhalten und mechanismen. Ph.D. thesis, Free University of Berlin.
- zur Mühlen A., Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 1998;53:552–555. doi: 10.1016/s0939-6411(97)00150-1. [DOI] [PubMed] [Google Scholar]
- zur Mühlen A., Schwarz C., Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998;45(2):149–155. doi: 10.1016/s0939-6411(97)00150-1. [DOI] [PubMed] [Google Scholar]
- zur Mühlen A., von Elverfeldt D., Bassler N., Neudorfer I., Steitz B., Petri-Fink A., Hofmann H., Bode C., Peter K. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis. 2007;193(1):102–111. doi: 10.1016/j.atherosclerosis.2006.08.048. [DOI] [PubMed] [Google Scholar]