Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2012 Dec 18;42(12):3126–3135. doi: 10.1002/eji.201242683

Experimental and natural infections in MyD88‐ and IRAK‐4‐deficient mice and humans

Horst von Bernuth 1,2,, Capucine Picard 3,4,5, Anne Puel 4,5, Jean‐Laurent Casanova 4,5,6,7
PMCID: PMC3752658  NIHMSID: NIHMS492205  PMID: 23255009

Abstract

Most Toll‐like‐receptors (TLRs) and interleukin‐1 receptors (IL‐1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin‐1 receptor‐associated kinase 4 (IRAK‐4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88‐ and IRAK‐4‐deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, eight viruses, seven parasites, and four fungi. Humans with inborn MyD88 or IRAK‐4 deficiency were first identified in 2003. They suffer from naturally occurring life‐threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR‐ and IL‐1R‐dependent immunity mediated by MyD88 and IRAK‐4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR‐ and IL‐1R‐dependent immunity mediated by MyD88 and IRAK‐4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL‐1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review.

Keywords: Invasive pyogenic infections, IRAK4, MyD88, Primary immunodeficiency, Toll‐like receptors

Introduction

MyD88 was first described as a “macrophage differentiation marker” for which mRNA accumulated in murine M1 myeloleukemic cells upon activation with IL‐6 1, 2. Human MYD88 maps to chromosome 3p22‐p21.3 and contains five exons 1. The full‐length cDNA for human MYD88 encodes 296 amino acids forming a 33 kDa protein 2. Murine Myd88 maps to chromosome 9q119. It also has five exons and the full‐length cDNA encodes 296 amino acids forming a 33‐kDa protein. The MyD88 protein includes an N‐terminal “death domain” (DD) and a C‐terminal Toll‐interleukin receptor (TIR) domain, similar to the intracellular domains of TLRs and members of the IL‐1R superfamily, collectively referred to as TIR receptors 2, 3, 4, 5, 6. Human IRAK4 maps to chromosome 12q12 and contains 13 exons. The full‐length cDNA for human IRAK‐4 encodes 460 amino acids, forming a 52 kDa protein. The murine Irak4 gene maps to chromosome 15q94 and also contains 13 exons. The corresponding full‐length cDNA encodes 459 amino acids, forming a 52 kDa protein. The IRAK‐4 protein contains an N‐terminal DD and a central kinase domain 7.

MyD88 and IRAK‐4 are essential for signaling via all TLRs with the exception of TLR3 and, to some extent, TLR4, and for signaling via most IL‐1Rs, including IL‐1R1, IL‐18R, and IL‐33R (ST2) 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. Following its activation, MyD88 binds to the IL‐1Rs and TLRs via its TIR domain, forming an oligomer; it then recruits IRAK‐4 to the receptor via its DD 5, 18, 19, 20, 21, mediating the activation of various transcription factors, including IRF5 and IRF7, AP‐1, and NF‐κB, depending in part on the cell type and the cell surface receptor stimulated 22 (Fig. 1). Thus, TIR‐MyD88‐IRAK‐4‐mediated signaling appears to be important for the innate recognition of pathogens and the ignition of inflammation, and, as such, is indispensable for the induction of protective immunity.

Figure 1.

Figure 1

MyD88‐ and IRAK‐4‐signaling pathways. The TIR superfamily (TLRs/IL‐1Rs) is dependent on MyD88 and IRAK‐4 signaling for its regulation of gene transcription. MyD88 and IRAK‐4 control IRF (Interferon regulatory factors), MAPK (map kinases), and NEMO (NF‐κB essential modulator) that regulate AP‐1 and NF‐κB (p50/p65); the latter by stimulating the phosphorylation and degradation of IκBα so releasing NF‐κB from the inactive NF‐κB/IκBα complex. MyD88 also controls IRF5‐ and IRF7‐dependent signaling (not shown).

However, most demonstrations of the importance of TIR‐MyD88‐IRAK‐4‐dependent pathways for protective immunity have been based on studies of experimental infections in mice in which protective immunity against a broad range of infectious agents has been shown; however, the essential nature of the role of TIR signaling in such broad‐ranging immunity has been called into question by both clinical genetic and evolutionary genetic studies 23, 24, 25, 26, 27, 28. In particular, the identification of human IRAK‐4 and MyD88 deficiencies as immunological and clinical phenocopies has provided considerable insights 29, 30. Detailed immunological and clinical descriptions of a large cohort of patients with these deficiencies have led to a reassessment of the importance of the TIR‐MyD88‐IRAK‐4‐dependent pathway for general protective immunity in humans under natural conditions 31.

Impact of MyD88 and IRAK‐4 deficiencies on protective immunity in mice

Susceptibility to pathogens in MyD88‐ and IRAK‐4‐deficient mice

Myd88‐deficient mice are known to be susceptible to experimental infections with 45 pathogens: 27 bacteria 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, eight viruses 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, seven protozoa 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, and four fungi 108, 109, 110, 111, 112, 113. Enhanced pathogen growth in Myd88‐deficient mice has been observed for:

  1. Six Gram‐positive bacteria: Bacillus anthracis (spores injected subcutaneously (s.c.)) 77, Listeria monocytogenes after i.v. or i.p. injection or infection via gavage 33, 34, 38, 59 , Staphylococcus aureus after i.v. or s.c. injection 32, 50, Streptococcus agalacticae after s.c. or i.p. injection 37, Streptococcus pneumoniae after i.v. or i.n. infection 45, 48, Streptococcus pyogenes after s.c. injection 72;

  2. Eighteen Gram‐negative bacteria: Anaplasmataceae after i.p. injection 73, Borrelia burgdorferi after intradermal (i.d.) inoculation 42, 43, 51, Borrelia hermsii after i.p. injection 52, Brucella abortus after i.p. injection 46, 64, Burkholderia pseudomallei after i.n. inoculation 67, Campylobacter jejunii after stomach gavage 60, Chlamydia muridarum after i.n. inoculation 71, Chlamydia pneumoniae after i.n. application 47, Citrobacter koseri after the direct inoculation of live bacteria into the brain parenchyma by stereotactic injection 76, Citrobacter rodentium after ingestion of a suspension of the bacterium or gavage 61, 62, Franciscella tularensis after i.n. inoculation and i.d. deposition 53, 68, Haemophilus influenzae after i.n. inoculation or i.p. injection 49, 66, Klebsiella pneumoniae after intratracheal (i.t.) inoculation 69, Legionella pneumoniae after exposure to aerosols or after i.n. inoculation 54, 55, Mycoplasma pneumoniae after i.n. inoculation 74, Neisseria meningitidis after i.p. injection 56, Pseudomonas aeruginosa after exposure to aerosolized bacteria or i.n. inoculation 36, 44, 57, 63 , and Salmonella typhimurium after i.v. injection 70, 75;

  3. Three mycobacteria after i.v., i.n., or aerogenic exposure (Mycobacterium avium, Mycobacterium bovis, Mycobacterium tuberculosis) 35, 39, 40, 41, 58, 65;

  4. Eight viruses: Herpes simplex virus type 1 after aerogenic exposure 80, Herpes simplex virus type 2 after vaginal challenge 83, Influenza A virus after i.n. inoculation 84, Lymphocytic choriomeningitis virus after i.v. injection 81, 85, murine cytomegalovirus after i.p. injection 78, 79, 82, 86, rabies virus after intracranial injection 90, 91, SARS coronavirus after i.n. inoculation 89, and vesicular stomatitis virus after i.n. inoculation or i.v. injection 87, 88;

  5. Seven parasites: Cryptosporidium parvum after gavage 101, Enterocytozoon bieneusi after oral inoculation 107, Leishmania braziliensis after the s.c. injection of stationary‐phase promastigotes 104, Leishmania major after the s.c. injection of stationary‐phase promastigotes 94, 95, 105, Toxoplasma gondii after i.p. injection 92, 93, 96, 98, 103, 106, Trypanosoma brucei after i.p. infection 99, Trypanosoma cruzii after i.p. injection 97, 100, 102;

  6. Four fungi: Aspergillus after i.v. infection 108, Candida albicans after i.v or intragastric injection 108, 109, 112, Cryptococcus neoformans after i.n. inoculation or i.p. injection 110, 111, Paracoccidioides brasiliensis after i.t. inoculation 113 (see Table 1).

Table 1.

Forty‐six pathogens displaying higher growth rates in vivo in MyD88‐deficient mice than in wild‐type controls in experimental conditions

Pathogen group Strain References
Gram‐positive bacteria Bacillus anthracis 77
Listeria monocytogenes 33, 34, 38, 59
Staphylococcus aureus 32, 50
Streptococcus agalacticae 37
Streptococcus pneumoniae 45, 48
Streptococcus pyogenes 72
Gram‐negative bacteria Anaplasmataceae 73
Borrelia burgdorferi 42, 43, 51
Borrelia hermsii 52
Brucella abortus 46, 64
Burkholderia pseudomallei 67
Campylobacter jejuni 60
Chlamydia muridarum 71
Chlamydia pneumoniae 47
Citrobacter koseri 76
Citrobacter rodentium 61, 62
Francisella tularensis 53, 68
Haemophilus influenzae 49, 66
Klebsiella pneumoniae 69
Legionella pneumoniae 54, 55
Mycoplasma pneumoniae 74
Neisseria meningitidis 56
Pseudomonas aeruginosa 36, 44, 57, 63
Salmonella typhimurium 70, 75
Mycobacteria Mycobacterium avium 35
Mycobacterium bovis 39
Mycobacterium tuberculosis 40, 41, 58, 65
Viruses Herpes simplex virus 1 80
Herpes simplex virus 2 83
Influenza A virus 84
Lymphocytic choriomeningitis virus 81, 85
Murine cytomegalovirus 78, 79, 82, 86
Rabies virus 90, 91
SARS coronavirus 89
Vesicular stomatitis virus 87, 88
Parasites Cryptosporidium parvum 101
Enterocytozoon bieneusi 107
Leishmania braziliensis 104
Leishmania major 94, 95, 105
Toxoplasma gondii 92, 93, 96, 98, 103, 106
Trypanosoma brucei 99
Trypanosoma cruzii 97, 100, 102
Fungi Aspergillus spp. 108
Candida albicans 108, 109, 112
Cryptococcus neoformans 110, 111
Paracoccidioides brasiliensis 113

This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

IRAK‐4‐deficient mice showed enhanced pathogen growth when challenged with S. aureus i.p. 17.

Survival of MyD88‐ and IRAK‐4‐deficient mice

Survival of deficient mice

As greater pathogen growth in vivo is not always correlated with lower levels of survival, we consider here the published mortality data for experimental infections of MyD88‐deficient mice. Mortality due to experimental infections was greater in MyD88‐deficient mice than in wild‐type mice for 33 pathogens:

  1. Six Gram‐positive bacteria: B. anthracis after i.p. injection of the toxin 77, L. monocytogenes after i.v injection 33, S. aureus after i.v injection 32, S. agalacticae after s.c. or i.p. injection 37, S. pneumoniae after i.v. or i.n. infection 45, 48, S. pyogenes after s.c. injection 72;

  2. Eight Gram‐negative bacteria: Anaplasmataceae after i.p. injection 73, B. hermsii after i.p. injection 52, B. pseudomallei after i.n. inoculation 67, C. muridarum after i.n. inoculation 71, C. pneumoniae after i.n. application 47, F. tularensis after i.n. inoculation and i.d. deposition 53, 68, K. pneumoniae after i.t. inoculation 69, P. aeruginosa after exposure to aerosolized bacteria or i.n. inoculation 36, 44, 57, 63;

  3. Three mycobacteria after i.v., i.n., or aerogenic exposure (M. avium, M. bovis, M. tuberculosis) 35, 39, 40, 41, 58;

  4. Eight viruses: Herpes simplex virus type 1 after aerogenic exposure 80, herpes simplex virus type 2 after vaginal challenge 83, influenza A virus after i.n. inoculation 84, lymphocytic choriomeningitis virus after i.v. injection 81, 85, murine cytomegalovirus after i.p. injection 78, 82, Rabies virus after intracranial injection 90, 91, SARS coronavirus after i.n. inoculation 89, vesicular stomatitis virus after i.n. inoculation or i.v. injection 87, 88;

  5. Four parasites: C. parvum after gavage 101, T. gondii after i.p. injection 92, 93, 96, 98, 103, 106, T. brucei after i.p. infection 99, T. cruzii after i.p. injection 97, 102;

  6. Four fungi: Aspergillus after i.v. infection 108, C. albicans after i.v. or intragastric injection 108, 109, 112, C. neoformans after i.n. inoculation or i.p. injection 110, 111, P. brasiliensis after i.t. inoculation 113 (see Table 2).

Table 2.

Thirty‐three pathogens for which the mortality of MyD88‐deficient mice in vivo was greater than that of wild‐type controls in experimental conditions

Pathogen group Strain References
Gram‐positive bacteria Bacillus anthracis 77
Listeria monocytogenes 33
Staphylococcus aureus 32
Streptococcus agalacticae 37
Streptococcus pneumoniae 45, 48
Streptococcus pyogenes 72
Gram‐negative bacteria Anaplasmataceae 73
Borrelia hermsii 52
Burkholderia pseudomallei 67
Chlamydia muridarum 71
Chlamydia pneumoniae 47
Francisella tularensis 53, 68
Klebsiella pneumoniae 69
Pseudomonas aeruginosa 36, 44, 57, 63
Mycobacteria Mycobacterium avium 35
Mycobacterium bovis 39
Mycobacterium tuberculosis 40, 41, 58, 65
Viruses Herpes simplex virus 1 80
Herpes simplex virus 2 83
Influenza A virus 84
Lymphocytic choriomeningitis virus 81, 85
Murine cytomegalovirus 78, 82
Rabies virus 90, 91
SARS coronavirus 89
Vesicular stomatitis virus 87, 88
Parasites Cryptosporidium parvum 101
Toxoplasma gondii 92, 93, 96, 98, 103, 106
Trypanosoma brucei 99
Trypanosoma cruzii 97, 102
Fungi Aspergillus spp. 108
Candida albicans 108, 109, 112
Cryptococcus neoformans 110, 111
Paracoccidioides brasiliensis 113

This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

IRAK‐4‐deficient mice displayed lower levels of survival than wild‐type mice following i.p. challenge with S. aureus 17.

Impact of MyD88‐ and IRAK‐4 deficiencies on protective immunity in humans

Susceptibility to pathogens in MyD88‐ and IRAK‐4‐deficient patients

The initial description of human IRAK‐4 deficiency was based on three patients 29 and that of human MyD88 deficiency was based on nine patients 30. These patients all carried either homozygous or compound heterozygous mutations of the IRAK4 or MYD88 gene that lead to nonfunctional proteins 29, 30. Given these small numbers of patients, only brief preliminary conclusions could be made concerning the infectious phenotype associated with the absence of MyD88‐IRAK‐4‐dependent signaling. The cumulative evidence from the large number of case reports since published and from the comprehensive description of a cohort of 76 patients (52 with IRAK‐4 deficiency and 24 with MyD88 deficiency) allow firmer conclusions about the infectious phenotype in the absence of MyD88‐IRAK‐4‐dependent signaling to be drawn 31, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129. There are also an additional five patients with IRAK‐4 deficiency and two patients with MyD88 deficiency for whom no data have yet been published. The infectious pheno‐type of MyD88‐ and IRAK‐4‐deficient patients is dominated by invasive pyogenic infections. The most frequent of such infections are meningitis, sepsis, arthritis, and osteomyelitis, and the principal bacteria isolated in cases of invasive infection are S. pneumoniae, S. aureus, and Pseudmomonas aeruginosa (for a list of all the pathogens isolated from Myd88‐ and IRAK‐4‐deficient patients, see Table 3). These patients also typically suffer from deep tissue infections of the upper respiratory tract, such as severe tonsillitis due to P. aeruginosa in particular, and superficial skin infections, mostly caused by S. aureus.

Table 3.

Invasive infections in patients with impaired MyD88‐IRAK‐4 signaling caused by six Gram‐positive and 13 Gram‐negative bacteria

Pathogen group Strain References
Gram‐positive bacteria Staphylococcus aureus 29, 30, 31, 115, 117, 119, 121, 125, 126, 128
Streptococcus agalacticae 30, 31, 127, 128
Streptococcus milleri 125
Streptococcus parasanguis 118
Streptococcus pneumoniae 29, 30, 31, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128
Streptococcus pyogenes 31, 128
Gram‐negative bacteria Acinetobacter baumanii 128
Citrobacter freundii 31
Clostridium septicum 31, 114, 116
Escherichia coli 31
Haemophilus influenzae 31
Klebsiella pneumoniae 31
Moraxella catarrhalis 31
Neisseria meningitidis 31, 114, 116, 125
Proteus spp. 30, 31
Pseudomonas aeruginosa 30, 31, 120, 121, 122, 125, 128
Salmonella enterica 30, 31
Serratia marcescens 31
Shigella sonnei 31, 119, 125, 127

This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

We cannot rule out the possibility that the predominance of Gram‐positive bacteria in patients with MyD88 and IRAK‐4 deficiencies results at least in part from a patient recruitment bias. No patients with these deficiencies have yet been identified in the Indian subcontinent, in South America or in China. Patients with MyD88‐ or IRAK‐4‐deficiencies in these areas of the world might perhaps present a higher frequency of infections with Gram‐negative bacteria, as suggested by case reports of invasive infection with Shigella spp. during endemic diarrhea outbreaks 119, 127. However, by contrast to this uncertainty concerning positive associations about the infectious phenotype, we can highlight much more emphatically the negative associations drawn concerning the roles of MyD88 and IRAK‐4 in host anti‐pathogen defense. Most, if not all, of the 76 patients identified to date have been exposed to mycobacteria, viruses, Toxoplasma, Pneumocystis, and other fungi, but none of these pathogens caused invasive infection. This strongly suggests that MyD88 and IRAK‐4 are dispensable in humans for defense against these pathogens, contrary to expectations based on the results obtained in the mouse model 31.

Survival of MyD88‐ and IRAK‐4‐deficient patients

At the time of writing, 26 patients with MyD88 deficiency have been identified (22 published 31, two unpublished (von Bernuth, unpublished)). Nine of these patients have died since identification: five in infancy and four in early childhood. The youngest of these nine patients died at 1 month of age and the oldest died at 4 years of age. The 15 surviving patients are currently four, seven, 11, 14, and 20 years old. Fifty‐two patients with IRAK‐4 deficiency have been identified 31. Twenty‐one of these patients have died since identification: 10 in infancy and 11 in early childhood. The youngest of these 19 patients was 2 months old, and the oldest was 7 years old, at the time of death; the latter being patient P23 from the large cohort published in 2010 31 who recently died of S. pneumoniae meningitis (unpublished observation). The 31 surviving patients are currently two (two patients), three (one patient), four (one patient), five (two patients), six (two patients), seven (three patients), nine (one patient), 12 (one patient), 13 (two patients), 14 (two patients), 15 (two patients), 16 (two patients), 17 (two patients), 18 (one patient), 20 (one patient), 21 (one patient), 22 (one patient), 30 (one patient), 33 (two patients), and 38 (one patient) years old 31. Thus, it can clearly be seen that human MyD88‐ and IRAK‐4‐deficiencies are life threatening. MyD88 and IRAK‐4 are indispensable for survival in infancy and early childhood and, before the advent of vaccines and antibiotics, most if not all children with these defects would have died in the first few years of life. However, several individuals with MyD88 deficiency or its immunological phenocopy, IRAK‐4‐deficiency, who were given antibiotic prophylaxis and even sometimes IgG substitution following the genetic identification of the disease, have survived into adolescence and adulthood. Many of these patients have since stopped taking regular antibiotic prophylaxis, but have not yet developed invasive pyogenic infections. MyD88‐IRAK‐4‐dependent signaling, therefore, appears to be dispensable for survival after adolescence.

Closing remarks

The notion that TLR‐ and IL‐1R‐mediated innate immune recognition is indispensable for survival and protective defense against many pathogens — based largely on findings in mouse models of experimental infections — should be reconsidered in light of the naturally occurring infections in humans with MyD88‐ or IRAK‐4‐deficiency. By contrast to the broad susceptibility of MyD88‐deficient mice to 46 different bacteria, viruses, protozoa, and fungi (i.e. to almost nearly all the microbes tested), patients with MyD88‐ or IRAK‐4‐deficiencies are susceptible to invasive and noninvasive infections with only a few Gram‐positive and Gram‐negative bacteria. Moreover, MyD88‐IRAK‐4‐mediated TLR and IL‐1R immunity is undoubtedly vital in infancy and early childhood, but gradually becomes dispensable, from adolescence onwards. Overall, MyD88‐dependent TLR and IL‐1R immunity is vital in both mice and humans, but its role in the course of naturally occurring infections in humans seems to be much more restricted than initially inferred from experimental infections in mice, as humans lacking functional MyD88 or IRAK‐4 proteins are susceptible to a narrow range of pathogens, and only in infancy and early childhood. The different outcomes between experimental infections in mice and natural infections in humans may be due to species‐specific differences, or more likely to differences in the modes of infection. In that regard, the study of naturally occurring infections in MyD88‐ and IRAK‐4‐deficient mice would be insightful, as suggested by preliminary studies 130. In any case, the studies of MyD88‐ and IRAK4‐deficient humans neatly illustrate the value of dissecting inborn errors of immunity underlying pediatric infectious diseases for deciphering the redundant and nonredundant roles of host defense genes in natura 23, 24, 25, 26, 27, 28. Immunological redundancy is greater in the course of natural infections in outbred human populations than in the course of experimental infections in inbred mice. Genetic studies of this type will facilitate the burgeoning, long‐awaited investigation of the contribution of immunity to health, and disease in humans 131, 132, 133.

Conflict of interest

The authors have declared no conflict of interest.

Abbreviations

DD

death domain

TIR

Toll‐interleukin receptor

Acknowledgements

We thank all patients, their families, and physicians for their trust and cooperation. We thank Pegah Ghandil, Cheng‐Lung Ku, Maya Chrabieh, Jacqueline Feinberg, and Laurent Abel, members of the laboratory for Human Genetics of Infectious Diseases, Paris and Anne‐Hélène Lebrun, Michael Bauer and Karoline Strehl, members of Kinderklinik mit Schwerpunkt Pneumologie und Immunologie, Berlin for critically reading the manuscript. The Laboratory of Human Genetics of Infectious Diseases is supported by grants from The Rockefeller University Center for Clinical and Translational Science (5UL1RR024143‐03) and The Rockefeller University. The Laboratory of Human Genetics of Infectious Diseases was supported by the March of Dimes, the Dana Foundation, the ANR, INSERM, and PHRC. HvB received funding from the University San Raffaele (Milan, Italy), the Legs Poix (Paris, France), the Deutsche Forschungsgemeinschaft (DFG VO 995/1‐1, VO 995/1‐2). HvB receives ongoing support by the Deutsche Forschungsgemeinschaft (DFG BE 3895/3‐1) (Bonn, Germany), the Bundesministerium für Bildung und Forschung (PID‐NET) (Berlin, Germany), the Sonnenfeldstiftung (Berlin), and intramural funding from the Medical Faculty, Charité, Berlin.

References

  • 1. Hardiman, G. , Jenkins, N. A. , Copeland, N. G. , Gilbert, D. J. , Garcia, D. K. , Naylor, S. L. , Kastelein, R. A. et al., Genetic structure and chromosomal mapping of MyD88. Genomics 1997. 45: 332–339. [DOI] [PubMed] [Google Scholar]
  • 2. Hardiman, G. , Rock, F. L. , Balasubramanian, S. , Kastelein, R. A. and Bazan, J. F. , Molecular characterization and modular analysis of human MyD88. Oncogene 1996. 13: 2467–2475. [PubMed] [Google Scholar]
  • 3. Gay, N. J. and Keith, F. J. , Drosophila Toll and IL‐1 receptor. Nature 1991. 351: 355–356. [DOI] [PubMed] [Google Scholar]
  • 4. Whitham, S. , Dinesh‐Kumar, S. P. , Choi, D. , Hehl, R. , Corr, C. and Baker, B. , The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin‐1 receptor. Cell 1994. 78: 1101–1115. [DOI] [PubMed] [Google Scholar]
  • 5. Burns, K. , Martinon, F. , Esslinger, C. , Pahl, H. , Schneider, P. , Bodmer, J. L. , Di Marco, F. et al., MyD88, an adapter protein involved in interleukin‐1 signaling. J. Biol. Chem. 1998. 273: 12203–12209. [DOI] [PubMed] [Google Scholar]
  • 6. Bowie, A. and O'Neill, L. A. , The interleukin‐1 receptor/Toll‐like receptor superfamily: signal generators for pro‐inflammatory interleukins and microbial products. J. Leukoc. Biol. 2000. 67: 508–514. [DOI] [PubMed] [Google Scholar]
  • 7. Li, S. , Strelow, A. , Fontana, E. J. and Wesche, H. , IRAK‐4: a novel member of the IRAK family with the properties of an IRAK‐kinase. Proc. Natl. Acad. Sci. USA 2002. 99: 5567–5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Adachi, O. , Kawai, T. , Takeda, K. , Matsumoto, M. , Tsutsui, H. , Sakagami, M. , Nakanishi, K. et al., Targeted disruption of the MyD88 gene results in loss of IL‐1‐ and IL‐18‐mediated function. Immunity 1998. 9: 143–150. [DOI] [PubMed] [Google Scholar]
  • 9. Medzhitov, R. , Preston‐Hurlburt, P. , Kopp, E. , Stadlen, A. , Chen, C. , Ghosh, S. and Janeway, C. A., Jr. , MyD88 is an adaptor protein in the hToll/IL‐1 receptor family signaling pathways. Mol. Cell 1998. 2: 253–258. [DOI] [PubMed] [Google Scholar]
  • 10. Kawai, T. , Adachi, O. , Ogawa, T. , Takeda, K. and Akira, S. , Unresponsiveness of MyD88‐deficient mice to endotoxin. Immunity 1999. 11: 115–122. [DOI] [PubMed] [Google Scholar]
  • 11. Andreakos, E. , Sacre, S. M. , Smith, C. , Lundberg, A. , Kiriakidis, S. , Stonehouse, T. , Monaco, C. et al., Distinct pathways of LPS‐induced NF‐kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP . Blood 2004. 103: 2229–2237. [DOI] [PubMed] [Google Scholar]
  • 12. Jiang, Z. , Mak, T. W. , Sen, G. and Li, X. , Toll‐like receptor 3‐mediated activation of NF‐kappaB and IRF3 diverges at Toll‐IL‐1 receptor domain‐containing adapter inducing IFN‐beta. Proc. Natl. Acad. Sci. USA 2004. 101: 3533–3538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Li, X. and Qin, J. , Modulation of Toll‐interleukin 1 receptor mediated signaling. J. Mol. Med. 2005. 83: 258–266. [DOI] [PubMed] [Google Scholar]
  • 14. Schmitz, J. , Owyang, A. , Oldham, E. , Song, Y. , Murphy, E. , McClanahan, T. K. , Zurawski, G. et al., IL‐33, an interleukin‐1‐like cytokine that signals via the IL‐1 receptor‐related protein ST2 and induces T helper type 2‐associated cytokines. Immunity 2005. 23: 479–490. [DOI] [PubMed] [Google Scholar]
  • 15. Ali, S. , Huber, M. , Kollewe, C. , Bischoff, S. C. , Falk, W. and Martin, M. U. , IL‐1 receptor accessory protein is essential for IL‐33‐induced activation of T lymphocytes and mast cells. Proc. Natl. Acad. Sci. USA 2007. 104: 18660–18665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Ho, L. H. , Ohno, T. , Oboki, K. , Kajiwara, N. , Suto, H. , Iikura, M. , Okayama, Y. et al., IL‐33 induces IL‐13 production by mouse mast cells independently of IgE‐FcepsilonRI signals. J. Leukoc. Biol. 2007. 82: 1481–1490. [DOI] [PubMed] [Google Scholar]
  • 17. Suzuki, N. , Suzuki, S. , Duncan, G. S. , Millar, D. G. , Wada, T. , Mirtsos, C. , Takada, H. et al., Severe impairment of interleukin‐1 and Toll‐like receptor signalling in mice lacking IRAK‐4. Nature 2002. 416: 750–756. [DOI] [PubMed] [Google Scholar]
  • 18. Wesche, H. , Henzel, W. J. , Shillinglaw, W. , Li, S. and Cao, Z. , MyD88: an adapter that recruits IRAK to the IL‐1 receptor complex. Immunity 1997. 7: 837–847. [DOI] [PubMed] [Google Scholar]
  • 19. Muzio, M. , Ni, J. , Feng, P. and Dixit, V. M. , IRAK (Pelle) family member IRAK‐2 and MyD88 as proximal mediators of IL‐1 signaling. Science 1997. 278: 1612–1615. [DOI] [PubMed] [Google Scholar]
  • 20. Motshwene, P. G. , Moncrieffe, M. C. , Grossmann, J. G. , Kao, C. , Ayaluru, M. , Sandercock, A. M. , Robinson, C. V. et al., An oligomeric signaling platform formed by the Toll‐like receptor signal transducers MyD88 and IRAK‐4. J. Biol. Chem. 2009. 284: 25404–25411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Lin, S. C. , Lo, Y. C. and Wu, H. , Helical assembly in the MyD88‐IRAK4‐IRAK2 complex in TLR/IL‐1R signalling. Nature 2010. 465: 885–890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Kawai, T. and Akira, S. , The role of pattern‐recognition receptors in innate immunity: update on Toll‐like receptors. Nat. Immunol. 2010. 11: 373–384. [DOI] [PubMed] [Google Scholar]
  • 23. Casanova, J. L. and Abel, L. , The human model: a genetic dissection of immunity to infection in natural conditions. Nat. Rev. Immunol. 2004. 4: 55–66. [DOI] [PubMed] [Google Scholar]
  • 24. Ku, C. L. , Yang, K. , Bustamante, J. , Puel, A. , von Bernuth, H. , Santos, O. F. , Lawrence, T. et al., Inherited disorders of human Toll‐like receptor signaling: immunological implications. Immunol. Rev. 2005. 203: 10–20. [DOI] [PubMed] [Google Scholar]
  • 25. Quintana‐Murci, L. , Alcais, A. , Abel, L. and Casanova, J. L. , Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat. Immunol. 2007. 8: 1165–1171. [DOI] [PubMed] [Google Scholar]
  • 26. Casanova, J. L. and Abel, L. , Primary immunodeficiencies: a field in its infancy. Science 2007. 317: 617–619. [DOI] [PubMed] [Google Scholar]
  • 27. Alcais, A. , Quintana‐Murci, L. , Thaler, D. S. , Schurr, E. , Abel, L. and Casanova, J. L. , Life‐threatening infectious diseases of childhood: single‐gene inborn errors of immunity? Ann. NY Acad. Sci. 2010. 1214: 18–33. [DOI] [PubMed] [Google Scholar]
  • 28. Casanova, J. L. , Abel, L. and Quintana‐Murci, L. , Human TLRs and IL‐1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 2011. 29: 447–491. [DOI] [PubMed] [Google Scholar]
  • 29. Picard, C. , Puel, A. , Bonnet, M. , Ku, C. L. , Bustamante, J. , Yang, K. , Soudais, C. et al., Pyogenic bacterial infections in humans with IRAK‐4 deficiency. Science 2003. 299: 2076–2079. [DOI] [PubMed] [Google Scholar]
  • 30. von Bernuth, H. , Picard, C. , Jin, Z. , Pankla, R. , Xiao, H. , Ku, C. L. , Chrabieh, M. et al., Pyogenic bacterial infections in humans with MyD88 deficiency. Science 2008. 321: 691–696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Picard, C. , von Bernuth, H. , Ghandil, P. , Chrabieh, M. , Levy, O. , Arkwright, P. D. , McDonald, D. et al., Clinical features and outcome of patients with IRAK‐4 and MyD88 deficiency. Medicine (Baltimore) 2010. 89: 403–425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Takeuchi, O. , Hoshino, K. and Akira, S. , Cutting edge: TLR2‐deficient and MyD88‐deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 2000. 165: 5392–5396. [DOI] [PubMed] [Google Scholar]
  • 33. Seki, E. , Tsutsui, H. , Tsuji, N. M. , Hayashi, N. , Adachi, K. , Nakano, H. , Futatsugi‐Yumikura, S. et al., Critical roles of myeloid differentiation factor 88‐dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J. Immunol. 2002. 169: 3863–3868. [DOI] [PubMed] [Google Scholar]
  • 34. Edelson, B. T. and Unanue, E. R. , MyD88‐dependent but Toll‐like receptor 2‐independent innate immunity to listeria: no role for either in macrophage listericidal activity. J. Immunol. 2002. 169: 3869–3875. [DOI] [PubMed] [Google Scholar]
  • 35. Feng, C. G. , Scanga, C. A. , Collazo‐Custodio, C. M. , Cheever, A. W. , Hieny, S. , Caspar, P. and Sher, A. , Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll‐like receptor 2 (TLR2)‐ and TLR4‐deficient animals. J. Immunol. 2003. 171: 4758–4764. [DOI] [PubMed] [Google Scholar]
  • 36. Skerrett, S. J. , Liggitt, H. D. , Hajjar, A. M. and Wilson, C. B. , Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus . J. Immunol. 2004. 172: 3377–3381. [DOI] [PubMed] [Google Scholar]
  • 37. Mancuso, G. , Midiri, A. , Beninati, C. , Biondo, C. , Galbo, R. , Akira, S. , Henneke, P. et al., Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J. Immunol. 2004. 172: 6324–6329. [DOI] [PubMed] [Google Scholar]
  • 38. Torres, D. , Barrier, M. , Bihl, F. , Quesniaux, V. J. , Maillet, I. , Akira, S. , Ryffel, B. et al., Toll‐like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect. Immun. 2004. 72: 2131–2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Nicolle, D. M. , Pichon, X. , Bouchot, A. , Maillet, I. , Erard, F. , Akira, S. , Ryffel, B. et al., Chronic pneumonia despite adaptive immune response to Mycobacterium bovis BCG in MyD88‐deficient mice. Lab. Invest. 2004. 84: 1305–1321. [DOI] [PubMed] [Google Scholar]
  • 40. Scanga, C. A. , Bafica, A. , Feng, C. G. , Cheever, A. W. , Hieny, S. and Sher, A. , MyD88‐deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 2004. 72: 2400–2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Fremond, C. M. , Yeremeev, V. , Nicolle, D. M. , Jacobs, M. , Quesniaux, V. F. and Ryffel, B. , Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Invest. 2004. 114: 1790–1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Liu, N. , Montgomery, R. R. , Barthold, S. W. and Bockenstedt, L. K. , Myeloid differentiation antigen 88 deficiency impairs pathogen clearance but does not alter inflammation in Borrelia burgdorferi‐infected mice. Infect. Immun. 2004. 72: 3195–3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Bolz, D. D. , Sundsbak, R. S. , Ma, Y. , Akira, S. , Kirschning, C. J. , Zachary, J. F. , Weis, J. H. et al., MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J. Immunol. 2004. 173: 2003–2010. [DOI] [PubMed] [Google Scholar]
  • 44. Power, M. R. , Peng, Y. , Maydanski, E. , Marshall, J. S. and Lin, T. J. , The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 2004. 279: 49315–49322. [DOI] [PubMed] [Google Scholar]
  • 45. Albiger, B. , Sandgren, A. , Katsuragi, H. , Meyer‐Hoffert, U. , Beiter, K. , Wartha, F. , Hornef, M. et al., Myeloid differentiation factor 88‐dependent signalling controls bacterial growth during colonization and systemic pneumococcal disease in mice. Cell. Microbiol. 2005. 7: 1603–1615. [DOI] [PubMed] [Google Scholar]
  • 46. Weiss, D. S. , Takeda, K. , Akira, S. , Zychlinsky, A. and Moreno, E. , MyD88, but not toll‐like receptors 4 and 2, is required for efficient clearance of Brucella abortus . Infect. Immun. 2005. 73: 5137–5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Naiki, Y. , Michelsen, K. S. , Schroder, N. W. , Alsabeh, R. , Slepenkin, A. , Zhang, W. , Chen, S. et al., MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia. J. Biol. Chem. 2005. 280: 29242–29249. [DOI] [PubMed] [Google Scholar]
  • 48. Khan, A. Q. , Chen, Q. , Wu, Z. Q. , Paton, J. C. and Snapper, C. M. , Both innate immunity and type 1 humoral immunity to Streptococcus pneumoniae are mediated by MyD88 but differ in their relative levels of dependence on toll‐like receptor 2. Infect. Immun. 2005. 73: 298–307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Wieland, C. W. , Florquin, S. , Maris, N. A. , Hoebe, K. , Beutler, B. , Takeda, K. , Akira, S. et al., The MyD88‐dependent, but not the MyD88‐independent, pathway of TLR4 signaling is important in clearing nontypeable Haemophilus influenzae from the mouse lung. J. Immunol. 2005. 175: 6042–6049. [DOI] [PubMed] [Google Scholar]
  • 50. Miller, L. S. , O'Connell, R. M. , Gutierrez, M. A. , Pietras, E. M. , Shahangian, A. , Gross, C. E. , Thirumala, A. et al., MyD88 mediates neutrophil recruitment initiated by IL‐1R but not TLR2 activation in immunity against Staphylococcus aureus . Immunity 2006. 24: 79–91. [DOI] [PubMed] [Google Scholar]
  • 51. Behera, A. K. , Hildebrand, E. , Bronson, R. T. , Perides, G. , Uematsu, S. , Akira, S. and Hu, L. T. , MyD88 deficiency results in tissue‐specific changes in cytokine induction and inflammation in interleukin‐18‐independent mice infected with Borrelia burgdorferi . Infect. Immun. 2006. 74: 1462–1470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Bolz, D. D. , Sundsbak, R. S. , Ma, Y. , Akira, S. , Weis, J. H. , Schwan, T. G. and Weis, J. J. , Dual role of MyD88 in rapid clearance of relapsing fever Borrelia spp. Infect. Immun. 2006. 74: 6750–6760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Collazo, C. M. , Sher, A. , Meierovics, A. I. and Elkins, K. L. , Myeloid differentiation factor‐88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intra‐macrophage bacterial replication. Microbes. Infect. 2006. 8: 779–790. [DOI] [PubMed] [Google Scholar]
  • 54. Hawn, T. R. , Smith, K. D. , Aderem, A. and Skerrett, S. J. , Myeloid differentiation primary response gene (88)‐ and toll‐like receptor 2‐deficient mice are susceptible to infection with aerosolized Legionella pneumophila . J. Infect. Dis. 2006. 193: 1693–1702. [DOI] [PubMed] [Google Scholar]
  • 55. Archer, K. A. and Roy, C. R. , MyD88‐dependent responses involving toll‐like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires’ disease. Infect. Immun. 2006. 74: 3325–3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Plant, L. , Wan, H. and Jonsson, A. B. , MyD88‐dependent signaling affects the development of meningococcal sepsis by nonlipooligosaccharide ligands. Infect. Immun. 2006. 74: 3538–3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Power, M. R. , Marshall, J. S. , Yamamoto, M. , Akira, S. and Lin, T. J. , The myeloid differentiation factor 88 is dispensable for the development of a delayed host response to Pseudomonas aeruginosa lung infection in mice. Clin. Exp. Immunol. 2006. 146: 323–329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Fremond, C. M. , Togbe, D. , Doz, E. , Rose, S. , Vasseur, V. , Maillet, I. , Jacobs, M. et al., IL‐1 receptor‐mediated signal is an essential component of MyD88‐dependent innate response to Mycobacterium tuberculosis infection. J. Immunol. 2007. 179: 1178–1189. [DOI] [PubMed] [Google Scholar]
  • 59. Brandl, K. , Plitas, G. , Schnabl, B. , Dematteo, R. P. and Pamer, E. G. , MyD88‐mediated signals induce the bactericidal lectin RegIII{gamma} and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 2007. 204: 1891–1900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Watson, R. O. , Novik, V. , Hofreuter, D. , Lara‐Tejero, M. and Galan, J. E. , A MyD88‐deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun. 2007. 75: 1994–2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Lebeis, S. L. , Bommarius, B. , Parkos, C. A. , Sherman, M. A. and Kalman, D. , TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium . J. Immunol. 2007. 179: 566–577. [DOI] [PubMed] [Google Scholar]
  • 62. Gibson, D. L. , Ma, C. , Bergstrom, K. S. , Huang, J. T. , Man, C. and Vallance, B. A. , MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium‐induced colitis. Cell. Microbiol. 2008. 10: 618–631. [DOI] [PubMed] [Google Scholar]
  • 63. Skerrett, S. J. , Wilson, C. B. , Liggitt, H. D. and Hajjar, A. M. , Redundant Toll‐like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa . Am. J. Physiol. Lung Cell Mol. Physiol. 2007. 292: L312–L322. [DOI] [PubMed] [Google Scholar]
  • 64. Macedo, G. C. , Magnani, D. M. , Carvalho, N. B. , Bruna‐Romero, O. , Gazzinelli, R. T. and Oliveira, S. C. , Central role of MyD88‐dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus Infection. J. Immunol. 2008. 180: 1080–1087. [DOI] [PubMed] [Google Scholar]
  • 65. Hölscher, C. , Reiling, N. , Schaible, U. E. , Hölscher, A. , Bathmann, C. , Korbel, D. , Lenz, I. et al., Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function of TLR2, ‐4 and ‐9. Eur. J. Immunol. 2008. 38: 680–694. [DOI] [PubMed] [Google Scholar]
  • 66. Hernandez, M. , Leichtle, A. , Pak, K. , Ebmeyer, J. , Euteneuer, S. , Obonyo, M. , Guiney, D. G. et al., Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J. Infect. Dis. 2008. 198: 1862–1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Wiersinga, W. J. , Wieland, C. W. , Roelofs, J. J. and van der Poll, T. , MyD88 dependent signaling contributes to protective host defense against Burkholderia pseudomallei . PLoS One 2008. 3: e3494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Abplanalp, A. L. , Morris, I. R. , Parida, B. K. , Teale, J. M. and Berton, M. T. , TLR‐dependent control of Francisella tularensis infection and host inflammatory responses. PLoS One 2009. 4: e7920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Cai, S. , Batra, S. , Shen, L. , Wakamatsu, N. and Jeyaseelan, S. , Both TRIF‐ and MyD88‐dependent signaling contribute to host defense against pulmonary Klebsiella infection. J. Immunol. 2009. 183: 6629–6638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Talbot, S. , Totemeyer, S. , Yamamoto, M. , Akira, S. , Hughes, K. , Gray, D. , Barr, T. et al., Toll‐like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar typhimurium infection, but not for the initiation of bacterial clearance. Immunology 2009. 128: 472–483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Zhang, X. , Gao, L. , Lei, L. , Zhong, Y. , Dube, P. , Berton, M. T. , Arulanandam, B. et al., A MyD88‐dependent early IL‐17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum . J. Immunol. 2009. 183: 1291–1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Loof, T. G. , Goldmann, O. , Gessner, A. , Herwald, H. and Medina, E. , Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88. Am. J. Pathol. 2010. 176: 754–763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Koh, Y. S. , Koo, J. E. , Biswas, A. and Kobayashi, K. S. , MyD88‐dependent signaling contributes to host defense against ehrlichial infection. PLoS One 2010. 5: e11758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Lai, J. F. , Zindl, C. L. , Duffy, L. B. , Atkinson, T. P. , Jung, Y. W. , van Rooijen, N. , Waites, K. B. et al., Critical role of macrophages and their activation via MyD88‐NFkappaB signaling in lung innate immunity to Mycoplasma pneumoniae . PLoS One 2010. 5: e14417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Seibert, S. A. , Mex, P. , Kohler, A. , Kaufmann, S. H. and Mittrucker, H. W. , TLR2‐, TLR4‐ and Myd88‐independent acquired humoral and cellular immunity against Salmonella enterica serovar Typhimurium. Immunol. Lett. 2010. 127: 126–134. [DOI] [PubMed] [Google Scholar]
  • 76. Liu, S. and Kielian, T. , MyD88 is pivotal for immune recognition of Citrobacter koseri and astrocyte activation during CNS infection. J. Neuroinflammation 2011. 8: 35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Okugawa, S. , Moayeri, M. , Eckhaus, M. A. , Crown, D. , Miller‐Randolph, S. , Liu, S. , Akira, S. et al., MyD88‐dependent signaling protects against anthrax lethal toxin‐induced impairment of intestinal barrier function. Infect. Immun. 2011. 79: 118–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Tabeta, K. , Georgel, P. , Janssen, E. , Du, X. , Hoebe, K. , Crozat, K. , Mudd, S. et al., Toll‐like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 2004. 101: 3516–3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Krug, A. , French, A. R. , Barchet, W. , Fischer, J. A. , Dzionek, A. , Pingel, J. T. , Orihuela, M. M. et al., TLR9‐dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 2004. 21: 107–119. [DOI] [PubMed] [Google Scholar]
  • 80. Mansur, D. S. , Kroon, E. G. , Nogueira, M. L. , Arantes, R. M. E. , Rodrigues, S. C. O. , Akira, S. , Gazzinelli, R. T. et al., Lethal encephalitis in myeloid differentiation factor 88‐deficient mice infected with herpes simplex virus 1. Am. J. Pathol. 2005. 166: 1419–1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Zhou, S. , Kurt‐Jones, E. A. , Mandell, L. , Cerny, A. , Chan, M. , Golenbock, D. T. and Finberg, R. W. , MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 2005. 35: 822–830. [DOI] [PubMed] [Google Scholar]
  • 82. Delale, T. , Paquin, A. , Asselin‐Paturel, C. , Dalod, M. , Brizard, G. , Bates, E. E. , Kastner, P. et al., MyD88‐dependent and ‐independent murine cytomegalovirus sensing for IFN‐alpha release and initiation of immune responses in vivo. J. Immunol. 2005. 175: 6723–6732. [DOI] [PubMed] [Google Scholar]
  • 83. Tengvall, S. and Harandi, A. M. , Importance of myeloid differentiation factor 88 in innate and acquired immune protection against genital herpes infection in mice. J. Reprod. Immunol. 2008. 78: 49–57. [DOI] [PubMed] [Google Scholar]
  • 84. Koyama, S. , Ishii, K. J. , Kumar, H. , Tanimoto, T. , Coban, C. , Uematsu, S. , Kawai, T. et al., Differential Role of TLR‐ and RLR‐signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 2007. 179: 4711–4720. [DOI] [PubMed] [Google Scholar]
  • 85. Jung, A. , Kato, H. , Kumagai, Y. , Kumar, H. , Kawai, T. , Takeuchi, O. and Akira, S. , Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces cytotoxic T cell response via MyD88. J. Virol. 2008. 82: 196–206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Hokeness‐Antonelli, K. L. , Crane, M. J. , Dragoi, A. M. , Chu, W. M. and Salazar‐Mather, T. P. , IFN‐alphabeta‐mediated inflammatory responses and antiviral defense in liver is TLR9‐independent but MyD88‐dependent during murine cytomegalovirus infection. J. Immunol. 2007. 179: 6176–6183. [DOI] [PubMed] [Google Scholar]
  • 87. Lang, K. S. , Navarini, A. A. , Recher, M. , Lang, P. A. , Heikenwalder, M. , Stecher, B. , Bergthaler, A. et al., MyD88 protects from lethal encephalitis during infection with vesicular stomatitis virus. Eur. J. Immunol. 2007. 37: 2434–2440. [DOI] [PubMed] [Google Scholar]
  • 88. Zhou, S. , Kurt‐Jones, E. A. , Fitzgerald, K. A. , Wang, J. P. , Cerny, A. M. , Chan, M. and Finberg, R. W. , Role of MyD88 in route‐dependent susceptibility to vesicular stomatitis virus infection. J. Immunol. 2007. 178: 5173–5181. [DOI] [PubMed] [Google Scholar]
  • 89. Sheahan, T. , Morrison, T. E. , Funkhouser, W. , Uematsu, S. , Akira, S. , Baric, R. S. and Heise, M. T. , MyD88 is required for protection from lethal infection with a mouse‐adapted SARS‐CoV . PLoS Pathog. 2008. 4: e1000240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Li, J. , Faber, M. , Dietzschold, B. and Hooper, D. C. , The role of toll‐like receptors in the induction of immune responses during rabies virus infection. Adv. Virus Res. 2011. 79: 115–126. [DOI] [PubMed] [Google Scholar]
  • 91. Faber, M. , Li, J. , Kean, R. B. , Hooper, D. C. , Alugupalli, K. R. and Dietzschold, B. , Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. USA 2009. 106: 11300–11305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Scanga, C. A. , Aliberti, J. , Jankovic, D. , Tilloy, F. , Bennouna, S. , Denkers, E. Y. , Medzhitov, R. et al., Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite‐induced IL‐12 production by dendritic cells. J. Immunol. 2002. 168: 5997–6001. [DOI] [PubMed] [Google Scholar]
  • 93. Chen, M. , Aosai, F. , Norose, K. , Mun, H. S. , Takeuchi, O. , Akira, S. and Yano, A. , Involvement of MyD88 in host defense and the down‐regulation of anti‐heat shock protein 70 autoantibody formation by MyD88 in Toxoplasma gondii‐infected mice. J. Parasitol. 2002. 88: 1017–1019. [DOI] [PubMed] [Google Scholar]
  • 94. de Veer, M. J. , Curtis, J. M. , Baldwin, T. M. , DiDonato, J. A. , Sexton, A. , McConville, M. J. , Handman, E. et al., MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll‐like receptor 2 signaling. Eur. J. Immunol. 2003. 33: 2822–2831. [DOI] [PubMed] [Google Scholar]
  • 95. Debus, A. , Glasner, J. , Rollinghoff, M. and Gessner, A. , High levels of susceptibility and T helper 2 response in MyD88‐deficient mice infected with Leishmania major are interleukin‐4 dependent. Infect. Immun. 2003. 71: 7215–7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Mun, H. S. , Aosai, F. , Norose, K. , Chen, M. , Piao, L. X. , Takeuchi, O. , Akira, S. et al., TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection. Int. Immunol. 2003. 15: 1081–1087. [DOI] [PubMed] [Google Scholar]
  • 97. Campos, M. A. , Closel, M. , Valente, E. P. , Cardoso, J. E. , Akira, S. , Alvarez‐Leite, J. I. , Ropert, C. et al., Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J. Immunol. 2004. 172: 1711–1718. [DOI] [PubMed] [Google Scholar]
  • 98. Hitziger, N. , Dellacasa, I. , Albiger, B. and Barragan, A. , Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin‐1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. Cell Microbiol. 2005. 7: 837–848. [DOI] [PubMed] [Google Scholar]
  • 99. Drennan, M. B. , Stijlemans, B. , Van den Abbeele, J. , Quesniaux, V. J. , Barkhuizen, M. , Brombacher, F. , De Baetselier, P. et al., The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent. J. Immunol. 2005. 175: 2501–2509. [DOI] [PubMed] [Google Scholar]
  • 100. Bafica, A. , Santiago, H. C. , Goldszmid, R. , Ropert, C. , Gazzinelli, R. T. and Sher, A. , Cutting edge: TLR9 and TLR2 signaling together account for MyD88‐dependent control of parasitemia in Trypanosoma cruzi infection. J. Immunol. 2006. 177: 3515–3519. [DOI] [PubMed] [Google Scholar]
  • 101. Rogers, K. A. , Rogers, A. B. , Leav, B. A. , Sanchez, A. , Vannier, E. , Uematsu, S. , Akira, S. et al., MyD88‐dependent pathways mediate resistance to Cryptosporidium parvum infection in mice. Infect. Immun. 2006. 74: 549–556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Koga, R. , Hamano, S. , Kuwata, H. , Atarashi, K. , Ogawa, M. , Hisaeda, H. , Yamamoto, M. et al., TLR‐dependent induction of IFN‐beta mediates host defense against Trypanosoma cruzi . J. Immunol. 2006. 177: 7059–7066. [DOI] [PubMed] [Google Scholar]
  • 103. Sukhumavasi, W. , Egan, C. E. , Warren, A. L. , Taylor, G. A. , Fox, B. A. , Bzik, D. J. and Denkers, E. Y. , TLR adaptor MyD88 is essential for pathogen control during oral Toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. J. Immunol. 2008. 181: 3464–3473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Vargas‐Inchaustegui, D. A. , Tai, W. , Xin, L. , Hogg, A. E. , Corry, D. B. and Soong, L. , Distinct roles for MyD88 and Toll‐like receptor 2 during Leishmania braziliensis infection in mice. Infect. Immun. 2009. 77: 2948–2956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Revaz‐Breton, M. , Ronet, C. , Ives, A. , Torre, Y. H. , Masina, S. , Tacchini‐Cottier, F. and Launois, P. , The MyD88 protein 88 pathway is differently involved in immune responses induced by distinct substrains of Leishmania major . Eur. J. Immunol. 2010. 40: 1697–1707. [DOI] [PubMed] [Google Scholar]
  • 106. Hou, B. , Benson, A. , Kuzmich, L. , DeFranco, A. L. and Yarovinsky, F. , Critical coordination of innate immune defense against Toxoplasma gondii by dendritic cells responding via their Toll‐like receptors. Proc. Natl. Acad. Sci. USA 2011. 108: 278–283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Zhang, Q. , Feng, X. , Nie, W. , Golenbock, D. T. , Mayanja‐Kizza, H. , Tzipori, S. and Feng, H. , MyD88‐dependent pathway is essential for the innate immunity to Enterocytozoon bieneusi . Parasite Immunol. 2011. 33: 217–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Bellocchio, S. , Montagnoli, C. , Bozza, S. , Gaziano, R. , Rossi, G. , Mambula, S. S. , Vecchi, A. et al., The contribution of the Toll‐like/IL‐1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 2004. 172: 3059–3069. [DOI] [PubMed] [Google Scholar]
  • 109. Villamon, E. , Gozalbo, D. , Roig, P. , Murciano, C. , O'Connor, J. E. , Fradelizi, D. and Gil, M. L. , Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida‐induced production of cytokines. Eur. Cytokine Netw. 2004. 15: 263–271. [PubMed] [Google Scholar]
  • 110. Yauch, L. E. , Mansour, M. K. , Shoham, S. , Rottman, J. B. and Levitz, S. M. , Involvement of CD14, toll‐like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 2004. 72: 5373–5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Biondo, C. , Midiri, A. , Messina, L. , Tomasello, F. , Garufi, G. , Catania, M. R. , Bombaci, M. et al., MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans . Eur. J. Immunol. 2005. 35: 870–878. [DOI] [PubMed] [Google Scholar]
  • 112. De Luca, A. , Montagnoli, C. , Zelante, T. , Bonifazi, P. , Bozza, S. , Moretti, S. , D'Angelo, C. et al., Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO‐dependent inhibition of Rorc. J. Immunol. 2007. 179: 5999–6008. [DOI] [PubMed] [Google Scholar]
  • 113. Loures, F. V. , Pina, A. , Felonato, M. , Feriotti, C. , de Araujo, E. F. and Calich, V. L. , MyD88 signaling is required for efficient innate and adaptive immune responses to Paracoccidioides brasiliensis infection. Infect. Immun. 2011. 79: 2470–2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Kuhns, D. B. , Long Priel, D. A. and Gallin, J. I. , Endotoxin and IL‐1 hyporesponsiveness in a patient with recurrent bacterial infections. J. Immunol. 1997. 158: 3959–3964. [PubMed] [Google Scholar]
  • 115. Haraguchi, S. , Day, N. K. , Nelson, R. P., Jr. , Emmanuel, P. , Duplantier, J. E. , Christodoulou, C. S. and Good, R. A. , Interleukin 12 deficiency associated with recurrent infections. Proc. Natl. Acad. Sci. USA 1998. 95: 13125–13129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Medvedev, A. E. , Lentschat, A. , Kuhns, D. B. , Blanco, J. C. , Salkowski, C. , Zhang, S. , Arditi, M. et al., Distinct Mutations in IRAK‐4 confer hyporesponsiveness to lipopolysaccharide and interleukin‐1 in a patient with recurrent bacterial infections. J. Exp. Med. 2003. 198: 521–531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Day, N. , Tangsinmankong, N. , Ochs, H. , Rucker, R. , Picard, C. , Casanova, J. L. , Haraguchi, S. et al., Interleukin receptor‐associated kinase (IRAK‐4) deficiency associated with bacterial infections and failure to sustain antibody responses. J. Pediatr. 2004. 144: 524–526. [DOI] [PubMed] [Google Scholar]
  • 118. Enders, A. , Pannicke, U. , Berner, R. , Henneke, P. , Radlinger, K. , Schwarz, K. and Ehl, S. , Two siblings with lethal pneumococcal meningitis in a family with a mutation in interleukin‐1 receptor‐associated kinase 4. J. Pediatr. 2004. 145: 698–700. [DOI] [PubMed] [Google Scholar]
  • 119. Chapel, H. , Puel, A. , von Bernuth, H. , Picard, C. and Casanova, J. L. , Shigella sonnei meningitis due to interleukin‐1 receptor‐associated kinase‐4 deficiency: first association with a primary immune deficiency. Clin. Infect. Dis. 2005. 40: 1227–1231. [DOI] [PubMed] [Google Scholar]
  • 120. McDonald, D. R. , Brown, D. , Bonilla, F. A. and Geha, R. S. , Interleukin receptor‐associated kinase‐4 deficiency impairs Toll‐like receptor‐dependent innate antiviral immune responses. J. Allergy Clin. Immunol. 2006. 118: 1357–1362. [DOI] [PubMed] [Google Scholar]
  • 121. Cardenes, M. , von Bernuth, H. , Garcia‐Saavedra, A. , Santiago, E. , Puel, A. , Ku, C. L. , Emile, J. F. et al., Autosomal recessive interleukin‐1 receptor‐associated kinase 4 deficiency in fourth‐degree relatives. J. Pediatr. 2006. 148: 549–551. [DOI] [PubMed] [Google Scholar]
  • 122. Davidson, D. J. , Currie, A. J. , Bowdish, D. M. , Brown, K. L. , Rosenberger, C. M. , Ma, R. C. , Bylund, J. et al., IRAK‐4 mutation (Q293X): rapid detection and characterization of defective post‐transcriptional TLR/IL‐1R responses in human myeloid and non‐myeloid cells. J. Immunol. 2006. 177: 8202–8211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Takada, H. , Yoshikawa, H. , Imaizumi, M. , Kitamura, T. , Takeyama, J. , Kumaki, S. , Nomura, A. et al., Delayed separation of the umbilical cord in two siblings with Interleukin‐1 receptor‐associated kinase 4 deficiency: rapid screening by flow cytometer. J. Pediatr. 2006. 148: 546–548. [DOI] [PubMed] [Google Scholar]
  • 124. Szabo, J. , Dobay, O. , Erdos, M. , Borbely, A. , Rozgonyi, F. and Marodi, L. , Recurrent infection with genetically identical pneumococcal isolates in a patient with interleukin‐1 receptor‐associated kinase‐4 deficiency. J. Med. Microbiol. 2007. 56: 863–865. [DOI] [PubMed] [Google Scholar]
  • 125. Ku, C. L. , von Bernuth, H. , Picard, C. , Zhang, S. Y. , Chang, H. H. , Yang, K. , Chrabieh, M. et al., Selective predisposition to bacterial infections in IRAK‐4‐deficient children: IRAK‐4‐dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 2007. 204: 2407–2422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Comeau, J. L. , Lin, T. J. , Macken, M. B. , Li, B. , Ku, C. L. , von Bernuth, H. , Casanova, J. L. et al., Staphylococcal pericarditis and liver and paratracheal abscesses as presentations in two new cases of interleukin‐1 receptor associated kinase 4 deficiency. Pediatr. Infect. Dis. J. 2008. 27: 170–174. [DOI] [PubMed] [Google Scholar]
  • 127. Krause, J. C. , Ghandil, P. , Chrabieh, M. , Casanova, J. L. , Picard, C. , Puel, A. and Creech, C. B. , Very late‐onset group B Streptococcus meningitis, sepsis, and systemic shigellosis due to interleukin‐1 receptor‐associated kinase‐4 deficiency. Clin. Infect. Dis. 2009. 49: 1393–1396. [DOI] [PubMed] [Google Scholar]
  • 128. Conway, D. H. , Dara, J. , Bagashev, A. and Sullivan, K. E. , Myeloid differentiation primary response gene 88 (MyD88) deficiency in a large kindred. J. Allergy Clin. Immunol. 2010. 126: 172–175. [DOI] [PubMed] [Google Scholar]
  • 129. Picard, C. , Casanova, J. L. and Puel, A. , Infectious diseases in patients with IRAK‐4, MyD88, NEMO, or IkappaBalpha deficiency. Clin. Microbiol. Rev. 2011. 24: 490–497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Beutler, B. , Jiang, Z. , Georgel, P. , Crozat, K. , Croker, B. , Rutschmann, S. , Du, X. et al., Genetic analysis of host resistance: Toll‐like receptor signlling and immunity at large. Ann. Rev. Immunol. 2006. 24: 353–89. [DOI] [PubMed] [Google Scholar]
  • 131. Davis, M. M. , A prescription for human immunology. Immunity 2008. 29: 835–838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Hayday, A. C. and Peakman, M. , The habitual, diverse and surmountable obstacles to human immunology research. Nat. Immunol. 2008. 9: 575–580. [DOI] [PubMed] [Google Scholar]
  • 133. Davis, M. M. , Immunology taught by humans. Sci. Transl. Med. 2012. 4: 117–112. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from European Journal of Immunology are provided here courtesy of Wiley

RESOURCES