Abstract
Bacteriophage χ attaches to the filament of a bacterial flagellum by means of a tail fiber, but the ultimate receptor site for the phage is located at the base of the bacterial flagellum. Here, the phage injects its deoxyribonucleic acid into the bacterium, leaving the empty phage attached at the base. It is suggested that χ slides along the filament of the flagellum to the base, owing to the movement of the flagellum. The role of motility would thus be to provide for rapid adsorption of the phage by guiding the phage to the adsorption sites at the bases of the flagella. Bacteria whose motility has been strongly inhibited by cold or anaerobic conditions still adsorb χ at the filaments and bases of flagella if a high multiplicity is used. This indicates that direct collisions with the bases may also be possible. Bacteria must be flagellated in order for χ to attach, but only a short flagellum, perhaps only the flagellar base, is necessary.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. Effect of amino acids and oxygen on chemotaxis in Escherichia coli. J Bacteriol. 1966 Jul;92(1):121–129. doi: 10.1128/jb.92.1.121-129.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adler J., Templeton B. The effect of environmental conditions on the motility of Escherichia coli. J Gen Microbiol. 1967 Feb;46(2):175–184. doi: 10.1099/00221287-46-2-175. [DOI] [PubMed] [Google Scholar]
- Anderson T. F., Stephens R. Decomposition of T6 bacteriophage in alkaline solutions. Virology. 1964 May;23(1):113–117. doi: 10.1016/s0042-6822(64)80017-9. [DOI] [PubMed] [Google Scholar]
- Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967 Jan;93(1):390–398. doi: 10.1128/jb.93.1.390-398.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
- Eiserling F. A. The structure of Bacillus subtilis bacteriophage PBS 1. J Ultrastruct Res. 1967 Feb;17(3):342–347. doi: 10.1016/s0022-5320(67)80053-4. [DOI] [PubMed] [Google Scholar]
- FRIEWER F. I., LEIFSON E. Non-motile flagellated variants of Salmonella thyphimurium. J Pathol Bacteriol. 1952 Jan;64(1):223–224. doi: 10.1002/path.1700640123. [DOI] [PubMed] [Google Scholar]
- HARRISON B. D., NIXON H. L. Purification and electron microscopy of three soil-borne plant viruses. Virology. 1960 Sep;12:104–117. doi: 10.1016/0042-6822(60)90152-5. [DOI] [PubMed] [Google Scholar]
- Iino T., Mitani M. Infection of Serratia marcescens by bacteriophage chi. J Virol. 1967 Apr;1(2):445–447. doi: 10.1128/jvi.1.2.445-447.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joys T. M. Correlation between susceptibility to bacteriophage PBS1 and motility in Bacillus subtilis. J Bacteriol. 1965 Dec;90(6):1575–1577. doi: 10.1128/jb.90.6.1575-1577.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLENBERGER E., BOLLE A., BOYDELATOUR E., EPSTEIN R. H., FRANKLIN N. C., JERNE N. K., REALE SCAFATI A., SECHAUD J. FUNCTIONS AND PROPERTIES RELATED TO THE TAIL FIBERS OF BACTERIOPHAGE T4. Virology. 1965 Jul;26:419–440. doi: 10.1016/0042-6822(65)90006-1. [DOI] [PubMed] [Google Scholar]
- Kaesberg P. Structure of Small "Spherical" Viruses. Science. 1956 Oct 5;124(3223):626–628. doi: 10.1126/science.124.3223.626. [DOI] [PubMed] [Google Scholar]
- LOWY J., HANSON J. ELECTRON MICROSCOPE STUDIES OF BACTERIAL FLAGELLA. J Mol Biol. 1965 Feb;11:293–313. doi: 10.1016/s0022-2836(65)80059-6. [DOI] [PubMed] [Google Scholar]
- Lowy J. Structure of the proximal ends of bacterial flagella. J Mol Biol. 1965 Nov;14(1):297–299. doi: 10.1016/s0022-2836(65)80251-0. [DOI] [PubMed] [Google Scholar]
- MEYNELL E. W. A phage, phi chi, which attacks motile bacteria. J Gen Microbiol. 1961 Jun;25:253–290. doi: 10.1099/00221287-25-2-253. [DOI] [PubMed] [Google Scholar]
- QUADLING C., STOCKER B. A. An environmentally-induced transition from the flagellated to the non-flagellated state in Salmonella typhimurium: the fate of parental flagella at cell division. J Gen Microbiol. 1962 Jun;28:257–270. doi: 10.1099/00221287-28-2-257. [DOI] [PubMed] [Google Scholar]
- STOCKER B. A., CAMPBELL J. C. The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration. J Gen Microbiol. 1959 Jun;20(3):670–685. doi: 10.1099/00221287-20-3-670. [DOI] [PubMed] [Google Scholar]
- Schade S., Adler J. Purification and chemistry of bacteriophage chi. J Virol. 1967 Jun;1(3):591–598. doi: 10.1128/jvi.1.3.591-598.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILCOX W. C., GINSBERG H. S., ANDERSON T. F. STRUCTURE OF TYPE 5 ADENOVIRUS. II. FINE STRUCTURE OF VIRUS SUBUNITIS. MORPHOLOGIC RELATIONSHIP OF STRUCTURAL SUBUNITS TO VIRUS-SPECIFIC SOLUBLE ANTIGENS FROM INFECTED CELLS. J Exp Med. 1963 Aug 1;118:307–314. doi: 10.1084/jem.118.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS R. C., SMITH K. M. The polyhedral form of the Tipula iridescent virus. Biochim Biophys Acta. 1958 Jun;28(3):464–469. doi: 10.1016/0006-3002(58)90507-9. [DOI] [PubMed] [Google Scholar]






