Abstract
Ribonucleic acid (RNA) was extracted by phenol treatment from cytoplasmic polyhedrosis virus isolated from the midgut of infected silkworms. This RNA appears as threads when precipitated in alcohol. Two components having different sedimentation constants were observed. The molecular weight of the RNA preparation obtained by sedimentation coefficient (weight-averaged) and intrinsic viscosity was about 2 × 106 to 3 × 106. It was one-half to one-third the size of the calculated molecular weight for an entire RNA molecule in a virion. Electron micrographs of this RNA preparation showed two peaks in the distribution of contour length, at 0.4 and 1.3 μm, which would correspond to molecular weights of 106 and 3 × 106, respectively. The extracted RNA seemed to split into segments at a preferential breaking point. This RNA was soluble in concentrated salt solution, differing from single stranded high-molecular-weight RNA. The base composition of this RNA was complementary in the ratios of adenosine to uridine and guanosine to cytosine. It contained 43% guanosine plus cytosine. Based on its filamentous appearance by electron microscopy, typical pattern of optical rotatory dispersion and circular dichroism, sharp transition of the optical properties on heating, great hyperchromicity on degradation, nonreactivity with formaldehyde, and resistance to ribonucleases, it is concluded that this RNA is double-stranded and has regular base pairings of guanosine-cytosine and adenosine-uridine.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnott S., Hutchinson F., Spencer M., Wilkins M. H., Fuller W., Langridge R. X-ray diffraction studies of double helical ribonucleic acid. Nature. 1966 Jul 16;211(5046):227–232. doi: 10.1038/211227a0. [DOI] [PubMed] [Google Scholar]
- BRAHMS J., MOMMAERTS W. F. A STUDY OF CONFORMATION OF NUCLEIC ACIDS IN SOLUTION BY MEANS OF CIRCULAR DICHROISM. J Mol Biol. 1964 Oct;10:73–88. doi: 10.1016/s0022-2836(64)80029-2. [DOI] [PubMed] [Google Scholar]
- BRAWERMAN G., HUFNAGEL D. A., CHARGAFF E. On the nucleic acids of green and colorless Euglena gracilis: isolation and composition of deoxyribonucleic acid and of transfer ribonucleic acid. Biochim Biophys Acta. 1962 Sep 17;61:340–345. doi: 10.1016/0926-6550(62)90134-2. [DOI] [PubMed] [Google Scholar]
- Dunnebacke T. H., Kleinschmidt A. K. Ribonucleic acid from reovirus as seen in protein monolayers by electron microscopy. Z Naturforsch B. 1967 Feb;22(2):159–164. doi: 10.1515/znb-1967-0210. [DOI] [PubMed] [Google Scholar]
- FRAENKEL-CONRAT H. Reaction of nucleic acid with formaldehyde. Biochim Biophys Acta. 1954 Oct;15(2):307–309. doi: 10.1016/0006-3002(54)90083-9. [DOI] [PubMed] [Google Scholar]
- FRESCO J. R., ALBERTS B. M., DOTY P. Some molecular details of the secondary structure of ribonucleic acid. Nature. 1960 Oct 8;188:98–101. doi: 10.1038/188098a0. [DOI] [PubMed] [Google Scholar]
- Franklin R. M. Replication of bacteriophage ribonucleic acid: some physical properties of single-stranded, double-stranded, and branched viral ribonucleic acid. J Virol. 1967 Feb;1(1):64–75. doi: 10.1128/jvi.1.1.64-75.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomatos P. J., Tamm I. THE SECONDARY STRUCTURE OF REOVIRUS RNA. Proc Natl Acad Sci U S A. 1963 May;49(5):707–714. doi: 10.1073/pnas.49.5.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAYASHI Y., KAWASE S. BASE PAIRING IN RIBONUCLEIC ACID EXTRACTED FROM THE CYTOPLASMIC POLYHEDRA OF THE SILKWORM. Virology. 1964 Aug;23:611–614. doi: 10.1016/0042-6822(64)90247-8. [DOI] [PubMed] [Google Scholar]
- Hukuhara T., Hashimoto Y. Serological studies of the cytoplasmic- and nuclear-polyhedrosis viruses of the silkworm, Bombyx mori. J Invertebr Pathol. 1966 Jun;8(2):234–239. doi: 10.1016/0022-2011(66)90134-0. [DOI] [PubMed] [Google Scholar]
- KLEINSCHMIDT A. K., DUNNEBACKE T. H., SPENDLOVE R. S., SCHAFFER F. L., WHITCOMB R. F. ELECTRON MICROSCOPY OF RNA FROM REOVIRUS AND WOUND TUMOR VIRUS. J Mol Biol. 1964 Nov;10:282–288. doi: 10.1016/s0022-2836(64)80046-2. [DOI] [PubMed] [Google Scholar]
- KLEINSCHMIDT A. K., LANG D., JACHERTS D., ZAHN R. K. [Preparation and length measurements of the total desoxyribonucleic acid content of T2 bacteriophages]. Biochim Biophys Acta. 1962 Dec 31;61:857–864. [PubMed] [Google Scholar]
- Kawase S. Ribonucleic acid extracted from the cytoplasmic-polyhedrosis virus of the silkwom, Bombyx mori. J Invertebr Pathol. 1967 Mar;9(1):136–138. doi: 10.1016/0022-2011(67)90057-2. [DOI] [PubMed] [Google Scholar]
- Kuwano M., Hayashi Y., Hayashi H., Miura K. Photochemical modification of transfer RNA and its effect on aminoacyl RNA synthesis. J Mol Biol. 1968 Mar 28;32(3):659–671. doi: 10.1016/0022-2836(68)90349-5. [DOI] [PubMed] [Google Scholar]
- LANGRIDGE R., BILLETER M. A., BORST P., BURDON R. H., WEISSMANN C. THE REPLICATIVE FORM OF MS2 RNA: AN X-RAY DIFFRACTION STUDY. Proc Natl Acad Sci U S A. 1964 Jul;52:114–119. doi: 10.1073/pnas.52.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LANGRIDGE R., GOMATOS P. J. The structure of RNA. Reovirus RNA and transfer RNA have similar three-dimensional structures, which differ from DNA. Science. 1963 Aug 23;141(3582):694–698. doi: 10.1126/science.141.3582.694. [DOI] [PubMed] [Google Scholar]
- MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids. 4. The nucleic acid of the turnip yellow mosaic virus including a note on the nucleic acid of the tomato bushy stunt virus. Biochem J. 1951 Sep;49(4):401–406. doi: 10.1042/bj0490401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Heterogeneity in deoxyribonucleic acids. I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature. 1959 May 23;183(4673):1427–1429. doi: 10.1038/1831427a0. [DOI] [PubMed] [Google Scholar]
- MIURA K. I., KITAMURA T., KAWADE Y. Fractionation of ribonucleic acid by precipitation with neutral salts. Biochim Biophys Acta. 1958 Feb;27(2):420–421. doi: 10.1016/0006-3002(58)90357-3. [DOI] [PubMed] [Google Scholar]
- MIURA K. I., MATSUZAKI K. NUCLEOTIDE COMPOSITION AND ARRANGEMENT OF SOLUBLE RNA IN POSTERIOR SILKGLAND. Biochim Biophys Acta. 1964 Nov 15;91:427–432. doi: 10.1016/0926-6550(64)90073-8. [DOI] [PubMed] [Google Scholar]
- MIURA K. I. The nucleotide composition of ribonucleic acids of soluble and particle fractions in several species of bacteria. Biochim Biophys Acta. 1962 Jan 22;55:62–70. doi: 10.1016/0006-3002(62)90931-9. [DOI] [PubMed] [Google Scholar]
- Miura K. I., Kimura I., Suzuki N. Double-stranded ribonucleic acid from rice dwarf virus. Virology. 1966 Apr;28(4):571–579. doi: 10.1016/0042-6822(66)90242-x. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- SAMEJIMA T., YANG J. T. OPTICAL ROTATORY DISPERSION AND CONFORMATION OF DEOXYRIBONUCLEIC AND RIBONUCLEIC ACIDS FROM VARIOUS SOURCES. J Biol Chem. 1965 May;240:2094–2100. [PubMed] [Google Scholar]
- SHACK J. On the recognition and estimation of denatured deoxyribonucleate. J Biol Chem. 1958 Sep;233(3):677–680. [PubMed] [Google Scholar]
- SPENCER M., FULLER W., WILKINS M. H., BROWN G. L. Determination of the helical configuration of ribonucleic acid molecules by X-ray diffraction study of crystalline amino-acid-transfer ribonucleic acid. Nature. 1962 Jun 16;194:1014–1020. doi: 10.1038/1941014a0. [DOI] [PubMed] [Google Scholar]
- STAEHELIN M. Reaction of tobacco mosaic virus nucleic acid with formaldehyde. Biochim Biophys Acta. 1958 Aug;29(2):410–417. doi: 10.1016/0006-3002(58)90200-2. [DOI] [PubMed] [Google Scholar]
- Samejima T., Hashizume H., Imahori K., Fujii I., Miura K. Optical rotatory dispersion and circular dichroism of rice dwarf virus ribonucleic acid. J Mol Biol. 1968 May 28;34(1):39–48. doi: 10.1016/0022-2836(68)90233-7. [DOI] [PubMed] [Google Scholar]
- Sato T., Kyogoku Y., Higuchi S., Mitsui Y., Iitaka Y., Tsuboi M., Miura K. I. A preliminay investigation on the molecular structure of rice dwarf virus ribonucleic acid. J Mol Biol. 1966 Mar;16(1):180–190. doi: 10.1016/s0022-2836(66)80271-1. [DOI] [PubMed] [Google Scholar]
- Shatkin A. J., Rada B. Reovirus-directed ribonucleic acid synthesis in infected L cells. J Virol. 1967 Feb;1(1):24–35. doi: 10.1128/jvi.1.1.24-35.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOMITA K. I., RICH A. X-RAY DIFFRACTION INVESTIGATIONS OF COMPLEMENTARY RNA. Nature. 1964 Mar 21;201:1160–1163. doi: 10.1038/2011160a0. [DOI] [PubMed] [Google Scholar]
- VINOGRAD J., BRUNER R., KENT R., WEIGLE J. Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc Natl Acad Sci U S A. 1963 Jun;49:902–910. doi: 10.1073/pnas.49.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOLKIN E., COHN W. E. Estimation of nucleic acids. Methods Biochem Anal. 1954;1:287–305. doi: 10.1002/9780470110171.ch11. [DOI] [PubMed] [Google Scholar]