Abstract
Infection by ribonucleic acid (RNA) bacteriophage R23 inhibited the synthesis of β-galactosidase in Escherichia coli. The inhibition, although not complete, was apparent shortly after infection and was maximal after the first 20 min of infection. R23 diminished the β-galactosidase-synthesizing capacity when inducer was added after phage infection, but not when infection followed inducer removal. These findings suggested that the primary effect of R23 on enzyme-forming capacity was limitation of synthesis of enzyme-specific messenger RNA. Studies with ultraviolet irradiated phage and amber mutants of R23 indicated that the inhibitory process could be separated into two phases. Early inhibition did not require the expression of the viral genome, whereas late inhibition required the expression of the viral RNA synthetase cistron.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENZER S. Induced synthesis of enzymes in bacteria analyzed at the cellular level. Biochim Biophys Acta. 1953 Jul;11(3):383–395. doi: 10.1016/0006-3002(53)90057-2. [DOI] [PubMed] [Google Scholar]
- Bishop D. H. Ribonucleic acid synthesis by Escherichia coli C 3000/L after infection by the ribonucleic acid coliphage ZIK/1, and properties of the coliphage-induced double-stranged ribonucleic acid. Biochem J. 1966 Sep;100(3):601–613. doi: 10.1042/bj1000601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop D. H. Ribonucleic acid synthesis by Escherichia coli C3000/L after infection by the ribonucleic acid coliphage ZIK/1, and properties of coliphage-ZIK/1 ribonucleic acid. Biochem J. 1965 Oct;97(1):17–26. doi: 10.1042/bj0970017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capecchi M. R. Cell-free protein synthesis programmed with R17 RNA: identification of two phage proteins. J Mol Biol. 1966 Oct 28;21(1):173–193. doi: 10.1016/0022-2836(66)90086-6. [DOI] [PubMed] [Google Scholar]
- ELLIS D. B., PARANCHYCH W. SYNTHESIS OF RIBONUCLEIC ACID AND PROTEIN IN BACTERIA INFECTED WITH AN RNA BACTERIOPHAGE. J Cell Physiol. 1963 Oct;62:207–213. doi: 10.1002/jcp.1030620209. [DOI] [PubMed] [Google Scholar]
- FRENCH R. C., SIMINOVITCH L. The action of T2 bacteriophage ghosts on Escherichia coli B. Can J Microbiol. 1955 Dec;1(9):757–774. doi: 10.1139/m55-090. [DOI] [PubMed] [Google Scholar]
- HARUNA I., NOZU K., OHTAKA Y., SPIEGELMAN S. AN RNA "REPLICASE" INDUCED BY AND SELECTIVE FOR A VIRAL RNA: ISOLATION AND PROPERTIES. Proc Natl Acad Sci U S A. 1963 Nov;50:905–911. doi: 10.1073/pnas.50.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERSHEY A. D., DIXON J., CHASE M. Nucleic acid economy in bacteria infected with bacteriophage T2. I. Purine and pyrimidine composition. J Gen Physiol. 1953 Jul;36(6):777–789. doi: 10.1085/jgp.36.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heisenberg M. Formation of defective bacteriophage particles by fr amber mutants. J Mol Biol. 1966 May;17(1):136–144. doi: 10.1016/s0022-2836(66)80100-6. [DOI] [PubMed] [Google Scholar]
- Hotham-Iglewski B., Franklin R. M. Replication of bacteriophage ribonucleic acid: alterations in polyribosome patterns and association of double-stranded RNA with polyribosomes in Escherichia coli infected with bacteriophage R17. Proc Natl Acad Sci U S A. 1967 Aug;58(2):743–749. doi: 10.1073/pnas.58.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howes W. V. Protein synthesis in Escherichia coli: a phage-mediated interruption of translation. Biochim Biophys Acta. 1965 Aug 10;103(4):711–713. doi: 10.1016/0005-2787(65)90095-x. [DOI] [PubMed] [Google Scholar]
- Hudson J. B., Paranchych W. Effect of bacteriophage R17 infection on host-directed synthesis of ribosomal ribonucleates. J Virol. 1967 Jun;1(3):529–537. doi: 10.1128/jvi.1.3.529-537.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEPES A. KINETICS OF INDUCED ENZYME SYNTHESIS. DETERMINATION OF THE MEAN LIFE OF GALACTOSIDASE-SPECIFIC MESSENGER RNA. Biochim Biophys Acta. 1963 Oct 15;76:293–309. [PubMed] [Google Scholar]
- Kaempfer R. O., Magasanik B. Effect of infection with T-even phage on the inducible synthesis of beta-glactosidase in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):453–468. doi: 10.1016/0022-2836(67)90051-4. [DOI] [PubMed] [Google Scholar]
- Kaempfer R. O., Magasanik B. Mechanism of beta-galactosidase induction in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):475–494. doi: 10.1016/0022-2836(67)90053-8. [DOI] [PubMed] [Google Scholar]
- LEVIN A. P., BURTON K. Inhibition of enzyme formation following infection of Escherichia coli with phage T2r. J Gen Microbiol. 1961 Jun;25:307–314. doi: 10.1099/00221287-25-2-307. [DOI] [PubMed] [Google Scholar]
- Lindqvist B. H., Sinsheimer R. L. Process of infection with bacteriophage phi-X174. XIV. Studies on macromolecular synthesis during infection with a lysis-defective mutant. J Mol Biol. 1967 Aug 28;28(1):87–94. doi: 10.1016/s0022-2836(67)80079-2. [DOI] [PubMed] [Google Scholar]
- Lodish H. F., Horiuchi K., Zinder N. D. Mutants of the bacteriophage f2. V. On the production of noninfectious phage particles. Virology. 1965 Oct;27(2):139–155. doi: 10.1016/0042-6822(65)90154-6. [DOI] [PubMed] [Google Scholar]
- NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
- NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOTANI G. W., ENGELHARDT D. L., KONIGSBERG W., ZINDER N. D. SUPPRESSION OF A COAT PROTEIN MUTANT OF THE BACTERIOPHAGE F2. J Mol Biol. 1965 Jun;12:439–447. doi: 10.1016/s0022-2836(65)80266-2. [DOI] [PubMed] [Google Scholar]
- Nathans D. Cell-free protein synthesis directed by coliphage MS2 RNA: synthesis of intact viral coat protein and other products. J Mol Biol. 1965 Sep;13(2):521–531. doi: 10.1016/s0022-2836(65)80114-0. [DOI] [PubMed] [Google Scholar]
- Nathans D., Oeschger M. P., Eggen K., Shimura Y. Bacteriophage-specific proteins in e. Coli infected with an RNA bacteriophage. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1844–1851. doi: 10.1073/pnas.56.6.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M., Witten C., Mantei N., Echols H. Inhibition of host nucleic acid synthesis by bacteriophage T4: effect of chloramphenicol at various multiplicities of infection. J Mol Biol. 1966 May;17(1):273–278. doi: 10.1016/s0022-2836(66)80107-9. [DOI] [PubMed] [Google Scholar]
- OHTAKA Y., SPIEGELMAN S. TRANSLATIONAL CONTROL OF PROTEIN SYNTHESIS IN A CELL-FREE SYSTEM DIRECTED BY A POLYCISTRONIC VIRAL RNA. Science. 1963 Oct 25;142(3591):493–497. doi: 10.1126/science.142.3591.493. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. The initial kinetics of enzyme induction. Biochim Biophys Acta. 1961 Apr 29;49:77–88. doi: 10.1016/0006-3002(61)90871-x. [DOI] [PubMed] [Google Scholar]
- SIMINOVITCH L., JACOB F. Biosynthèse induite d'un enzyme pendant le développement des bactériophages chez Escherichia coli K 12. Ann Inst Pasteur (Paris) 1952 Dec;83(6):745–754. [PubMed] [Google Scholar]
- Steitz J. A. Identification of the A protein as a structural component of bacteriophage R17. J Mol Biol. 1968 May 14;33(3):923–936. doi: 10.1016/0022-2836(68)90328-8. [DOI] [PubMed] [Google Scholar]
- Terzi M., Levinthal C. Effects of lambda-phage infection on bacterial synthesis. J Mol Biol. 1967 Jun 28;26(3):525–535. doi: 10.1016/0022-2836(67)90320-8. [DOI] [PubMed] [Google Scholar]
- Terzi M. Studies on the mechanism of bacteriophage T4 interference with host metabolism. J Mol Biol. 1967 Aug 28;28(1):37–44. doi: 10.1016/s0022-2836(67)80075-5. [DOI] [PubMed] [Google Scholar]
- Tooze J., Weber K. Isolation and characterization of amber mutants of bacteriophage R17. J Mol Biol. 1967 Sep 14;28(2):311–330. doi: 10.1016/s0022-2836(67)80012-3. [DOI] [PubMed] [Google Scholar]
- Viñuela E., Algranati I. D., Feix G., Garwes D., Weissmann C., Ochoa S. Virus-specific proteins in Escherichia coli infected with some amber mutants of phage MS2. Biochim Biophys Acta. 1968 Feb 26;155(2):558–565. doi: 10.1016/0005-2787(68)90199-8. [DOI] [PubMed] [Google Scholar]
- WAITES W. M., FRY B. A. EFFECT OF INFECTION WITH PHAGE LAMBDA ON THE SYNTHESIS OF PROTEIN, RNA AND DNA IN ESCHERICHIA COLI. J Gen Microbiol. 1964 Mar;34:413–426. doi: 10.1099/00221287-34-3-413. [DOI] [PubMed] [Google Scholar]
- WEISSMANN C., SIMON L., OCHOA S. Induction by an RNA phage of an enzyme catalyzing incorporation of ribonucleotides into ribonucleic acid. Proc Natl Acad Sci U S A. 1963 Mar 15;49:407–414. doi: 10.1073/pnas.49.3.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe M., Watanabe H., August J. T. Replication of RNA bacteriophage R23. I. Quantitative aspects of phage RNA and protein synthesis. J Mol Biol. 1968 Apr 14;33(1):1–20. doi: 10.1016/0022-2836(68)90277-5. [DOI] [PubMed] [Google Scholar]
- ZINDER N. D., COOPER S. HOST-DEPENDENT MUTANTS OF THE BACTERIOPHAGE F2. I. ISOLATION AND PRELIMINARY CLASSIFICATION. Virology. 1964 Jun;23:152–158. doi: 10.1016/0042-6822(64)90277-6. [DOI] [PubMed] [Google Scholar]
