Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1967 Feb;1(1):193–204. doi: 10.1128/jvi.1.1.193-204.1967

Induced Structural Defects in T-Even Bacteriophage

Donald J Cummings 1, V A Chapman 1, S S De Long 1, L Mondale 1
PMCID: PMC375519  PMID: 5623954

Abstract

Multiple aberrant substructures of T-even bacteriophage particles occurred when amino acid analogues or antimetabolites were present during phage growth. Certain aberrant substructures were induced by specific analogues or antimetabolites. In particular, it was observed by electron microscopy that l-canavanine, an arginine analogue, gave rise to polyheads; l-azetidine-2-carboxylic acid, a proline analogue, gave rise to polytail tubes; and 1,2,4-trizaole-3-alanine, a histidine analogue, proflavine, and actinomycin D all gave rise to small heads. These aberrant substructures were similar to those reported earlier with conditional lethal mutants (amber) of T4D in a restrictive host.

Full text

PDF
193

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
  2. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  3. CUMMINGS D. J. Photooxidative elimination of the head form transition in T2 bacteriophage. Virology. 1963 Apr;19:536–541. doi: 10.1016/0042-6822(63)90048-5. [DOI] [PubMed] [Google Scholar]
  4. CUMMINGS D. J. Subunit basis of head configurational changes in T2 bacteriophage. Biochim Biophys Acta. 1963 Mar 26;68:472–480. doi: 10.1016/0006-3002(63)90169-0. [DOI] [PubMed] [Google Scholar]
  5. DE MARS R. I., LURIA S. E., FISHER H., LEVINTHAL C. The production of incomplete bacteriophage particles by the action of proflavine and the properties of the incomplete particles. Ann Inst Pasteur (Paris) 1953 Jan;84(1):113–128. [PubMed] [Google Scholar]
  6. EDGAR R. S., LIELAUSIS I. TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4D: THEIR ISOLATION AND GENETIC CHARACTERIZATION. Genetics. 1964 Apr;49:649–662. doi: 10.1093/genetics/49.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edgar R. S., Wood W. B. Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498–505. doi: 10.1073/pnas.55.3.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JOHNSON A. B., STRECKER H. J. The interconversion of glutamic acid and proline. IV. The oxidation of proline by rat liver mitochondria. J Biol Chem. 1962 Jun;237:1876–1882. [PubMed] [Google Scholar]
  9. KARAMATA D., KELLENBERGER E., KELLENBERGER G., TERZI M. [On a particle accompanying the development of lambda coliphage]. Pathol Microbiol (Basel) 1962;25:575–585. [PubMed] [Google Scholar]
  10. KORN D., PROTASS J. J., LEIVE L. A NOVEL EFFECT OF ACTINOMYCIN D IN PREVENTING BACTERIOPHAGE T4 MATURATION IN ESCHERICHIA COLI. Biochem Biophys Res Commun. 1965 May 3;19:473–481. doi: 10.1016/0006-291x(65)90149-x. [DOI] [PubMed] [Google Scholar]
  11. KOZLOFF L. M., LUTE M. Viral invasion. III. The release of viral nucleic acid from its protein covering. J Biol Chem. 1957 Sep;228(1):537–546. [PubMed] [Google Scholar]
  12. LEVIN A. P., HARTMAN P. E. ACTION OF A HISTIDINE ANALOGUE, 1,2,4-TRIAZOLE-3-ALANINE, IN SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Oct;86:820–828. doi: 10.1128/jb.86.4.820-828.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MANDELL J. D., GREENBERG J. A new chemical mutagen for bacteria, 1-methyl-3-nitro-1-nitrosoguanidine. Biochem Biophys Res Commun. 1960 Dec;3:575–577. doi: 10.1016/0006-291x(60)90064-4. [DOI] [PubMed] [Google Scholar]
  14. Richmond M. H. Incorporation of canavanine by Staphylococcus aureus 524 SC. Biochem J. 1959 Oct;73(2):261–264. doi: 10.1042/bj0730261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richmond M. H. The differential effect of arginine and canavanine on growth and enzyme formation in Staphylococcus aureus 524 SC. Biochem J. 1959 Sep;73(1):155–167. doi: 10.1042/bj0730155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SARKAR S., SARKAR N., KOZLOFF L. M. TAIL COMPONENTS OF T2 BACTERIOPHAGE. II. PROPERTIES OF THE ISOLATED TAIL CORES. Biochemistry. 1964 Apr;3:517–521. doi: 10.1021/bi00892a009. [DOI] [PubMed] [Google Scholar]
  17. Schachtele C. F., Rogers P. Canavanine death in Escherichia coli. J Mol Biol. 1965 Dec;14(2):474–489. doi: 10.1016/s0022-2836(65)80197-8. [DOI] [PubMed] [Google Scholar]
  18. Scholtissek C., Becht H. Action of acridines on RNA and protein synthesis and on active transport in chick embryo cells. Biochim Biophys Acta. 1966 Sep;123(3):585–595. doi: 10.1016/0005-2787(66)90225-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES