Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1968 May;2(5):430–439. doi: 10.1128/jvi.2.5.430-439.1968

Role of Adenovirus Structural Proteins in the Cessation of Host-Cell Biosynthetic Functions 1

A J Levine 1,2, H S Ginsberg 1
PMCID: PMC375631  PMID: 4301313

Abstract

Two of the adenovirus capsid proteins, the fiber and the hexon, complexed with either KB cell or type 5 adenovirus deoxyribonucleic acid (DNA). Maximal binding occurred at 0.01 m NaCl; increasing the ionic strength of the reaction mixture to 0.2 m NaCl resulted in a decrease in the association of either antigen to DNA. Variations of pH between 6.3 and 8.4 did not affect the binding of fiber antigen to DNA. Below pH 7.5, however, there was a small decrease in the ability of the hexon to bind nucleic acid. The association between the adenovirus structural proteins and DNA was reversible and was independent of whether the DNA was native or denatured. The fiber or hexon protein inhibited the DNA-dependent ribonucleic acid (RNA) polymerase and the DNA polymerase from KB cells. On a weight basis, the fiber protein inhibited enzymatic activity to a greater extent than the hexon. Increasing the template DNA concentration decreased this inhibition. The inhibition of the DNA-dependent RNA polymerase activity by either antigen could be reversed by increasing the ionic strength of the reaction mixture. After infection of KB cells with type 5 adenovirus, the levels of DNA and RNA polymerases remained unchanged for 15 to 20 hr. Thereafter, the specific activity of both enzymes decreased. By 30 hr postinfection, the polymerase activities were only about 30% of the enzyme activities in uninfected cells.

Full text

PDF
430

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., LITTAU V. C., MIRSKY A. E. On the role of of histones in regulation ribonucleic acid synthesis in the cell nucleus. Proc Natl Acad Sci U S A. 1963 Mar 15;49:414–421. doi: 10.1073/pnas.49.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLISON A. C., PEREIRA H. G., FARTHING C. P. Investigation of adenovirus antigens by agar gel diffusion techniques. Virology. 1960 Mar;10:316–328. doi: 10.1016/0042-6822(60)90023-4. [DOI] [PubMed] [Google Scholar]
  3. BARR G. C., BUTLER J. A. HISTONES AND GENE FUNCTION. Nature. 1963 Sep 21;199:1170–1172. doi: 10.1038/1991170a0. [DOI] [PubMed] [Google Scholar]
  4. BORENFREUND E., FITT E., BENDICH A. Isolation and properties of deoxyribonucleic acid from mammalian sperm. Nature. 1961 Sep 30;191:1375–1377. doi: 10.1038/1911375a0. [DOI] [PubMed] [Google Scholar]
  5. BOYER G. S., DENNY F. W., Jr, GINSBERG H. S. Sequential cellular changes produced by types 5 and 7 adenoviruses in HeLa cells and in human amniotic cells; cytological studies aided by fluorescein-labelled antibody. J Exp Med. 1959 Nov 1;110:827–844. doi: 10.1084/jem.110.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bachrach U., Friedmann A. Purification and some possible functions of internal proteins from coliphage T2. Biochem Biophys Res Commun. 1967 Mar 9;26(5):596–601. doi: 10.1016/0006-291x(67)90107-6. [DOI] [PubMed] [Google Scholar]
  8. Bello L. J., Ginsberg H. S. Inhibition of host protein synthesis in type 5 adenovirus-infected cells. J Virol. 1967 Oct;1(5):843–850. doi: 10.1128/jvi.1.5.843-850.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  10. EAGLE H. Propagation in a fluid medium of a human epidermoid carcinoma, strain KB. Proc Soc Exp Biol Med. 1955 Jul;89(3):362–364. doi: 10.3181/00379727-89-21811. [DOI] [PubMed] [Google Scholar]
  11. FLANAGAN J. F., GINSBERG H. S. Synthesis of virus-specific polymers in adenovirus-infected cells; effect of 5-fluorodeoxyuridine. J Exp Med. 1962 Aug 1;116:141–157. doi: 10.1084/jem.116.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FURTH J. J., HO P. THE ENZYMATIC SYNTHESIS OF RIBONUCLEIC ACID IN ANIMAL TISSUE. I. THE DEOXYRIBONUCLEIC ACID-DIRECTED SYNTHESIS OF RIBONUCLEIC ACID AS CATALYZED BY AN ENZYME OBTAINED FROM BOVINE LYMPHOSARCOMA TISSUE. J Biol Chem. 1965 Jun;240:2602–2606. [PubMed] [Google Scholar]
  13. Flanagan J. F., Ginsberg H. S. Role of ribonucleic acid biosynthesis in multiplication of type 5 adenovirus. J Bacteriol. 1964 May;87(5):977–987. doi: 10.1128/jb.87.5.977-987.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GINSBERG H. S., DIXON M. K. Deoxyribonucleic acid (DNA) and protein alterations in HeLa cells infected with type 4 adenovirus. J Exp Med. 1959 Apr 1;109(4):407–422. doi: 10.1084/jem.109.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GINSBERG H. S., GOLD E., JORDAN W. S., Jr Tryptose phosphate broth as supplementary factor for maintenance of HeLa cell tissue cultures. Proc Soc Exp Biol Med. 1955 May;89(1):66–71. doi: 10.3181/00379727-89-21718. [DOI] [PubMed] [Google Scholar]
  16. GREEN M., DAESCH G. E. Biochemical studies on adenovirus multiplication. II. Kinetics of nucleic acid and protein synthesis in suspension cultures. Virology. 1961 Feb;13:169–176. doi: 10.1016/0042-6822(61)90051-4. [DOI] [PubMed] [Google Scholar]
  17. GREEN M., PINA M., CHAGOYA V. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION. V. ENZYMES OF DEOXYRIBONUCLEIC ACID SYNTHESIS IN CELLS INFECTED BY ADENOVIRUS AND VACCINIA VIRUS. J Biol Chem. 1964 Apr;239:1188–1197. [PubMed] [Google Scholar]
  18. Gurley L. R., Irvin J. L., Holbrook D. J. Inhibition of DNA polymerase by histones. Biochem Biophys Res Commun. 1964;14:527–532. doi: 10.1016/0006-291x(64)90263-3. [DOI] [PubMed] [Google Scholar]
  19. HELLER E. ENHANCEMENT OF CHIKUNGUNYA VIRUS REPLICATION AND INHIBITION OF INTERFERON PRODUCTION BY ACTINOMYCIN D. Virology. 1963 Dec;21:652–656. doi: 10.1016/0042-6822(63)90239-3. [DOI] [PubMed] [Google Scholar]
  20. HUANG R. C., BONNER J. Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1216–1222. doi: 10.1073/pnas.48.7.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HUEBNER R. J., ROWE W. P., WARD T. G., PARROTT R. H., BELL J. A. Adenoidal-pharyngeal-conjunctival agents: a newly recognized group of common viruses of the respiratory system. N Engl J Med. 1954 Dec 30;251(27):1077–1086. doi: 10.1056/NEJM195412302512701. [DOI] [PubMed] [Google Scholar]
  22. Hopper D. K., Ho P. L., Furth J. J. Detection of RNA and DNA polymerase in animal tissues by ammonium sulfate fractionation of cell-free extracts. Biochim Biophys Acta. 1966 Jun 15;118(3):648–651. doi: 10.1016/s0926-6593(66)80108-x. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Levine A. J., Ginsberg H. S. Mechanism by which fiber antigen inhibits multiplication of type 5 adenovirus. J Virol. 1967 Aug;1(4):747–757. doi: 10.1128/jvi.1.4.747-757.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MINAGAWA T. Some characteristics of the internal protein phage T2. Virology. 1961 Apr;13:515–527. doi: 10.1016/0042-6822(61)90283-5. [DOI] [PubMed] [Google Scholar]
  26. PEREIRA H. G. A virus inhibitor produced in HeLa cells infected with adenovirus. Virology. 1960 Jul;11:590–602. doi: 10.1016/0042-6822(60)90102-1. [DOI] [PubMed] [Google Scholar]
  27. Skalka A., Fowler A. V., Hurwitz J. The effect of histones on the enzymatic synthesis of ribonucleic acid. J Biol Chem. 1966 Feb 10;241(3):588–596. [PubMed] [Google Scholar]
  28. Taylor J. Inhibition of interferon action by actinomycin. Biochem Biophys Res Commun. 1964;14:447–451. doi: 10.1016/0006-291x(64)90084-1. [DOI] [PubMed] [Google Scholar]
  29. WILCOX W. C., GINSBERG H. S. STRUCTURE OF TYPE 5 ADENOVIRUS. I. ANTIGENIC RELATIONSHIP OF VIRUS-STRUCTURAL PROTEINS TO VIRUS-SPECIFIC SOLUBLE ANTIGENS FROM INFECTED CELLS. J Exp Med. 1963 Aug 1;118:295–306. doi: 10.1084/jem.118.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES