Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1968 Jul;2(7):678–685. doi: 10.1128/jvi.2.7.678-685.1968

Initiation of Vaccinia Virus Infection in Actinomycin D-pretreated Cells

Wayne E Magee 1, Olga V Miller 1
PMCID: PMC375673  PMID: 5723524

Abstract

The early steps in vaccinia virus infection were studied in HeLa cells which had been treated with actinomycin D (1 μg/ml) and then incubated for several hours in fresh medium prior to infection. Initiation of infection occurred in such cells even though the synthesis of cellular ribonucleic acid and deoxyribonucleic acid (DNA) was severely depressed. Thymidine kinase was synthesized in amounts that exceeded those found in untreated, infected cells. The breakdown of viral “cores” to liberate viral DNA and the synthesis of viral specific DNA-polymerase also occurred but were somewhat delayed. A deoxyribonuclease resembling an exonuclease was made by the infected, pretreated cells. The time course for these events suggested that the genetic code for synthesis of thymidine kinase can be expressed before “cores” are broken down, but the DNA-polymerase can be synthesized only after liberation of the viral DNA. The amount of viral specific DNA-polymerase which was made after infection was proportional to the total number of virus synthesizing sites even beyond the point where all the cells were infected with one infectious particle. A similar relationship was observed for the amount of thymidine kinase formed and for the rate of viral DNA synthesis from 3H-thymidine.

Full text

PDF
678

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  2. DALES S., KAJIOKA R. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. I. UPTAKE AND PENETRATION. Virology. 1964 Nov;24:278–294. doi: 10.1016/0042-6822(64)90167-9. [DOI] [PubMed] [Google Scholar]
  3. DALES S. The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol. 1963 Jul;18:51–72. doi: 10.1083/jcb.18.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dales S. Pentration of animal viruses into cells. Prog Med Virol. 1965;7:1–43. [PubMed] [Google Scholar]
  5. Eron L. J., McAuslan B. R. The nature of poxvirus-induced deoxyribonucleas. Biochem Biophys Res Commun. 1966 Mar 8;22(5):518–523. doi: 10.1016/0006-291x(66)90305-6. [DOI] [PubMed] [Google Scholar]
  6. GOMATOS P. J., TAMM I., DALES S., FRANKLIN R. M. Reovirus type 3: physical characteristics and interaction with L cells. Virology. 1962 Jul;17:441–454. doi: 10.1016/0042-6822(62)90139-3. [DOI] [PubMed] [Google Scholar]
  7. GREEN M., PINA M., CHAGOYA V. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION. V. ENZYMES OF DEOXYRIBONUCLEIC ACID SYNTHESIS IN CELLS INFECTED BY ADENOVIRUS AND VACCINIA VIRUS. J Biol Chem. 1964 Apr;239:1188–1197. [PubMed] [Google Scholar]
  8. Goldstein M. N., Hamm K., Amrod E. Incorporation of triated actinomycin D into drug-sensitive and drug-resistant HeLa cells. Science. 1966 Mar 25;151(3717):1555–1556. doi: 10.1126/science.151.3717.1555. [DOI] [PubMed] [Google Scholar]
  9. JOKLIK W. K., BECKER Y. THE REPLICATION AND COATING OF VACCINIA DNA. J Mol Biol. 1964 Dec;10:452–474. doi: 10.1016/s0022-2836(64)80066-8. [DOI] [PubMed] [Google Scholar]
  10. JOKLIK W. K. THE INTRACELLULAR UNCOATING OF POXVIRUS DNA. I. THE FATE OF RADIOACTIVELY-LABELED RABBITPOX VIRUS. J Mol Biol. 1964 Feb;8:263–276. doi: 10.1016/s0022-2836(64)80136-4. [DOI] [PubMed] [Google Scholar]
  11. JOKLIK W. K. THE INTRACELLULAR UNCOATING OF POXVIRUS DNA. II. THE MOLECULAR BASIS OF THE UNCOATING PROCESS. J Mol Biol. 1964 Feb;8:277–288. doi: 10.1016/s0022-2836(64)80137-6. [DOI] [PubMed] [Google Scholar]
  12. Joklik W. K. The molecular basis of the viral eclipse phase. Prog Med Virol. 1965;7:44–96. [PubMed] [Google Scholar]
  13. Jungwirth C., Joklik W. K. Studies on "early" enzymes in HeLa cells infected with vaccinia virus. Virology. 1965 Sep;27(1):80–93. doi: 10.1016/0042-6822(65)90145-5. [DOI] [PubMed] [Google Scholar]
  14. KAJIOKA R., SIMINOVITCH L., DALES S. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. II. INITIATION OF DNA SYNTHESIS AND MORPHOGENESIS. Virology. 1964 Nov;24:295–309. doi: 10.1016/0042-6822(64)90168-0. [DOI] [PubMed] [Google Scholar]
  15. KIT S., DUBBS D. R. BIOCHEMISTRY OF VACCINIA-INFECTED MOUSE FIBROBLASTS (STRAIN L-M). IV. 3H-THYMIDINE UPTAKE INTO DNA OF CELLS EXPOSED TO COLD SHOCK. Exp Cell Res. 1963 Aug;31:397–406. doi: 10.1016/0014-4827(63)90016-8. [DOI] [PubMed] [Google Scholar]
  16. KIT S., DUBBS D. R., HSU T. C. Biochemistry of vaccinia-infected mouse fibroblasts (strain L-M). III. Radioautographic and biochemical studies of thymidine-H3 uptake into DNA of L-M cells and rabbit cells in primary culture. Virology. 1963 Jan;19:13–22. doi: 10.1016/0042-6822(63)90019-9. [DOI] [PubMed] [Google Scholar]
  17. KIT S., PIEKARSKI L. J., DUBBS D. R. EFFECTS OF 5-FLUOROURACIL, ACTINOMYCIN D AND MITOMYCIN C ON THE INDUCTION OF THYMIDINE KINASE BY VACCINIA-INFECTED L-CELLS. J Mol Biol. 1963 Nov;7:497–510. doi: 10.1016/s0022-2836(63)80097-2. [DOI] [PubMed] [Google Scholar]
  18. KIT S., PIEKARSKI L. J., DUBBS D. R. Induction of thymidine kinase by vaccinia-infected mouse fibroblasts. J Mol Biol. 1963 Jan;6:22–33. doi: 10.1016/s0022-2836(63)80078-9. [DOI] [PubMed] [Google Scholar]
  19. Kates J. R., McAuslan B. R. Messenger RNA synthesis by a "coated" viral genome. Proc Natl Acad Sci U S A. 1967 Feb;57(2):314–320. doi: 10.1073/pnas.57.2.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kates J. R., McAuslan B. R. Poxvirus DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1967 Jul;58(1):134–141. doi: 10.1073/pnas.58.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levine S., Magee W. E., Hamilton R. D., Miller O. V. Effect of interferon on early enzyme and viral DNA synthesis in vaccinia virus infections. Virology. 1967 May;32(1):33–40. doi: 10.1016/0042-6822(67)90249-8. [DOI] [PubMed] [Google Scholar]
  22. MAGEE W. E. DNA polymerase and deoxyribonucleotide kinase activities in cells infected with vaccinia virus. Virology. 1962 Aug;17:604–607. doi: 10.1016/0042-6822(62)90167-8. [DOI] [PubMed] [Google Scholar]
  23. Magee W. E., Bach M. K. Biochemical studies on the antiviral activities of the isatin-beta-thiosemicarbazones. Ann N Y Acad Sci. 1965 Jul 30;130(1):80–91. doi: 10.1111/j.1749-6632.1965.tb12542.x. [DOI] [PubMed] [Google Scholar]
  24. Magee W. E., Miller O. V. Immunological evidence for the appearance of a new DNA-polymerase in cells infected with vaccinia virus. Virology. 1967 Jan;31(1):64–69. doi: 10.1016/0042-6822(67)90008-6. [DOI] [PubMed] [Google Scholar]
  25. McAuslan B. R., Herde P., Pett D., Ross J. Nucleases of virus-infected animal cells. Biochem Biophys Res Commun. 1965 Sep 8;20(5):586–591. doi: 10.1016/0006-291x(65)90439-0. [DOI] [PubMed] [Google Scholar]
  26. McAuslan B. R., Kates J. R. Regulation of virus-induced deoxyribonucleases. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1581–1587. doi: 10.1073/pnas.55.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Munyon W. H., Kit S. Induction of cytoplasmic ribonucleic acid (RNA) synthesis in vaccinia-infected LM cells during inhibition of protein synthesis. Virology. 1966 Jun;29(2):303–309. doi: 10.1016/0042-6822(66)90037-7. [DOI] [PubMed] [Google Scholar]
  28. OHNO S., NOZIMA T. INHIBITORY EFFECT OF INTERFERON ON THE INDUCTION OF THYMIDINE KINASE IN VACCINIA VIRUS-INFECTED CHICK EMBRYO FIBROBLASTS. Acta Virol. 1964 Sep;8:479–479. [PubMed] [Google Scholar]
  29. REICH E., FRANKLIN R. M., SHATKIN A. J., TATUMEL Action of actinomycin D on animal cells and viruses. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1238–1245. doi: 10.1073/pnas.48.7.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Woodson B. Vaccinia mRNA synthesis under conditions which prevent uncoating. Biochem Biophys Res Commun. 1967 Apr 20;27(2):169–175. doi: 10.1016/s0006-291x(67)80057-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES