Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1969 Feb;3(2):150–156. doi: 10.1128/jvi.3.2.150-156.1969

Nucleotide Distribution and Functional Orientation in the Deoxyribonucleic Acid of Phage φ80

A Skalka 1
PMCID: PMC375745  PMID: 5774137

Abstract

The distribution of nucleotides in the deoxyribonucleic acid (DNA) of φ80 was determined by density analysis of molecular fragments of known length and origin. One half of the molecule includes a long, fairly homogeneous segment that contains 55% guanine plus cytosine (GC). DNA in the other half contains about 50% GC, except for a short stretch near the molecular end where the GC content is higher. Transcription of φ80 DNA was studied by ribonucleic acid-DNA hybridization tests with isolated molecular halves. At times early in the growth cycle, messenger is synthesized at a constant, relatively low rate and originates almost exclusively from DNA in the lower-GC half. At later times, messenger represents both halves and is synthesized at a greatly increased rate. The DNA of φ80 is closely analogous, physically and functionally, to λ DNA. The similarity is most striking in the high-GC half, which is defined here as “left” since its molecular end contains a cohesive site homologous to that at λ's left end. The left halves of the DNA of the two phages contain primarily late-functioning genes, and possess similar nucleotide distributions and some similar base sequences. The right halves of the two DNA molecules are less similar. Both contain the early genes, but they differ considerably in GC content (45% in λ, 51% in φ80) and do not strongly cross-react in hybridization tests. The DNA of φ80 lacks the central 37%-GC segment found in λ.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E. Changes in molecular weight of DNA accompanying mutations in phage. Proc Natl Acad Sci U S A. 1963 Feb 15;49:151–155. doi: 10.1073/pnas.49.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin R. L., Barrand P., Fritsch A., Goldthwait D. A., Jacob F. Cohesive sites on the deoxyribonucleic acids from several temperate coliphages. J Mol Biol. 1966 Jun;17(2):343–357. doi: 10.1016/s0022-2836(66)80146-8. [DOI] [PubMed] [Google Scholar]
  3. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  4. Falkow S., Cowie D. B. Intramolecular heterogeneity of the deoxyribonucleic acid of temperate bacteriophages. J Bacteriol. 1968 Sep;96(3):777–784. doi: 10.1128/jb.96.3.777-784.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  6. HERSHEY A. D., BURGI E. COMPLEMENTARY STRUCTURE OF INTERACTING SITES AT THE ENDS OF LAMBDA DNA MOLECULES. Proc Natl Acad Sci U S A. 1965 Feb;53:325–328. doi: 10.1073/pnas.53.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MARKHAM R., SMITH J. D. The structure of ribonucleic acid. I. Cyclic nucleotides produced by ribonuclease and by alkaline hydrolysis. Biochem J. 1952 Dec;52(4):552–557. doi: 10.1042/bj0520552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MATSUSHIRO A., SATO K., KIDA S. CHARACTERISTICS OF THE TRANSDUCING ELEMENTS OF BACTERIOPHAGE PHI-80. Virology. 1964 Jul;23:299–306. doi: 10.1016/0042-6822(64)90251-x. [DOI] [PubMed] [Google Scholar]
  9. MATSUSHIRO A. Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage phi-80. Virology. 1963 Apr;19:475–482. doi: 10.1016/0042-6822(63)90041-2. [DOI] [PubMed] [Google Scholar]
  10. SIGNER E. R. RECOMBINATION BETWEEN COLIPHAGES LAMBDA AND PHI-80. Virology. 1964 Apr;22:650–651. doi: 10.1016/0042-6822(64)90090-x. [DOI] [PubMed] [Google Scholar]
  11. Sato K., Nishimune Y., Sato M., Numich R., Matsushiro A. Suppressor-sensitive mutants of coliphage phi-80. Virology. 1968 Apr;34(4):637–649. [PubMed] [Google Scholar]
  12. Skalka A., Burgi E., Hershey A. D. Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J Mol Biol. 1968 May 28;34(1):1–16. doi: 10.1016/0022-2836(68)90230-1. [DOI] [PubMed] [Google Scholar]
  13. Skalka A., Butler B., Echols H. Genetic control of transcription during development of phage gamma. Proc Natl Acad Sci U S A. 1967 Aug;58(2):576–583. doi: 10.1073/pnas.58.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Skalka A. Regional and temporal control of genetic transcription in phage lambda. Proc Natl Acad Sci U S A. 1966 May;55(5):1190–1195. doi: 10.1073/pnas.55.5.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wu R., Kaiser A. D. Mapping the 5'-terminal nucleotides of the DNA of bacteriophage lambda and related phages. Proc Natl Acad Sci U S A. 1967 Jan;57(1):170–177. doi: 10.1073/pnas.57.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamagishi H., Nakamura K., Ozeki H. Cohesion occurring between DNA molecules of temperate phages phi 80 and lambda or phi 81. Biochem Biophys Res Commun. 1965 Sep 22;20(6):727–732. doi: 10.1016/0006-291x(65)90077-x. [DOI] [PubMed] [Google Scholar]
  17. Yamagishi H., Yoshizako F. Characteristics of DNA molecules extracted from bacteriophages phi-80 and phi-80-pt. Virology. 1966 Sep;30(1):29–35. doi: 10.1016/s0042-6822(66)81006-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES