Abstract
The addition of 0.2 m l-arginine to various T-even bacteriophage preparations inactivated the virus preparations irreversibly. The virus particles were even more sensitive to added d-arginine and l-homoarginine than to l-arginine but were unaffected by arginine analogues with either an altered carboxyl group or guanidyl group. Treatment of phage T2H with 2,3-butanedione, a reagent which specifically reacts with the guanidyl portion of arginine residues, resulted in the apparent in-activation of most of the virus particles. However, after incubation of the treated particles at pH 7.5 at 37 C for 1 hr in the absence of butanedione, the original virus titer almost completely returned. The reactivation was completely inhibited by the presence of 0.2 m d-arginine. It appeared that the virus protein coat was sufficiently plastic so that the initial conformational change resulting from the alteration of an arginine residue (to possibly an ornithine residue) was at least partially reversible and that the virus tail proteins then refolded to produce a stable and active virus particle. These reactivated virus particles were not sensitive to inactivation by d-arginine but could now be rapidly inactivated by l-ornithine. Virus particles inactivated by arginine have altered tail structures. They have contracted tail sheaths still attached to tail plates and still contain tail cores. These properties of virus particles indicate that there is a free carboxyl group and a guanidyl group spatially equivalent to an arginine residue on one component of the virus tail which bind reversibly by means of polar linkages to another tail component. These bonds maintain the integrity of the virus tail. Added arginine appears to compete with this endogenous viral arginine for the binding sites and then to favor an irreversible conformational change.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRENNER S., CHAMPE S. P., STREISINGER G., BARNETT L. On the interaction of adsorption cofactors with bacteriophages T2 and T4. Virology. 1962 May;17:30–39. doi: 10.1016/0042-6822(62)90078-8. [DOI] [PubMed] [Google Scholar]
- BRENNER S., HORNE R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta. 1959 Jul;34:103–110. doi: 10.1016/0006-3002(59)90237-9. [DOI] [PubMed] [Google Scholar]
- CLAES H., NAKAYAMA T. O. Isomerization of poly-cis-carotenes by chlorophyll in vivo and in vitro. Nature. 1959 Apr 11;183(4667):1053–1053. doi: 10.1038/1831053a0. [DOI] [PubMed] [Google Scholar]
- COHN V. H., Jr, SHORE P. A. A microfluorometric method for the determination of agmatine. Anal Biochem. 1961 Jun;2:237–241. doi: 10.1016/s0003-2697(61)80006-7. [DOI] [PubMed] [Google Scholar]
- CUMMINGS D. J. SEDIMENTATION AND BIOLOGICAL PROPERTIES OF T-PHAGES OF ESCHERICHIA COLI. Virology. 1964 Jul;23:408–418. doi: 10.1016/0042-6822(64)90264-8. [DOI] [PubMed] [Google Scholar]
- Cummings D. J., Chapman V. A., DeLong S. S. Disruption of T-even bacteriophages by dimethyl sulfoxide. J Virol. 1968 Jun;2(6):610–620. doi: 10.1128/jvi.2.6.610-620.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edgar R. S., Lielausis I. Some steps in the assembly of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):263–276. doi: 10.1016/0022-2836(68)90008-9. [DOI] [PubMed] [Google Scholar]
- Edgar R. S., Wood W. B. Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci U S A. 1966 Mar;55(3):498–505. doi: 10.1073/pnas.55.3.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERRIOTT R. M., BARLOW J. L. The protein coats or ghosts of coliphage T2. I. Preparation, assay, and some chemical properties. J Gen Physiol. 1957 May 20;40(5):809–825. doi: 10.1085/jgp.40.5.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall D. H., Tessman I., Karlström O. Linkage of T4 genes controlling a series of steps in pyrimidine biosynthesis. Virology. 1967 Mar;31(3):442–448. doi: 10.1016/0042-6822(67)90224-3. [DOI] [PubMed] [Google Scholar]
- KANNER L. C., KOZLOFF L. M. THE REACTION OF INDOLE AND T2 BACTERIOPHAGE. Biochemistry. 1964 Feb;3:215–223. doi: 10.1021/bi00890a013. [DOI] [PubMed] [Google Scholar]
- KOZLOFF L. M., LUTE M., HENDERSON K. Viral invasion. I. Rupture of thiol ester bonds in the bacteriophage tail. J Biol Chem. 1957 Sep;228(1):511–528. [PubMed] [Google Scholar]
- KOZLOFF L. M., LUTE M. Viral invasion. III. The release of viral nucleic acid from its protein covering. J Biol Chem. 1957 Sep;228(1):537–546. [PubMed] [Google Scholar]
- King J. Assembly of the tail of bacteriophage T4. J Mol Biol. 1968 Mar 14;32(2):231–262. doi: 10.1016/0022-2836(68)90007-7. [DOI] [PubMed] [Google Scholar]
- Morris D. R., Pardee A. B. Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem. 1966 Jul 10;241(13):3129–3135. [PubMed] [Google Scholar]
- Ramachandran G. N., Mazumdar S. K., Venkatesan K., Lakshminarayanan A. V. Conformation of the arginine side-group and its variations. J Mol Biol. 1966 Jan;15(1):232–242. doi: 10.1016/s0022-2836(66)80223-1. [DOI] [PubMed] [Google Scholar]
- Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology. 1967 Jun;32(2):279–297. doi: 10.1016/0042-6822(67)90277-2. [DOI] [PubMed] [Google Scholar]
- Simon L. D., Anderson T. F. The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate. Virology. 1967 Jun;32(2):298–305. doi: 10.1016/0042-6822(67)90278-4. [DOI] [PubMed] [Google Scholar]
- WILLIAMS R. C., FRASER D. Structural and functional differentiation in T2 bacteriophage. Virology. 1956 Jun;2(3):289–307. doi: 10.1016/0042-6822(56)90024-1. [DOI] [PubMed] [Google Scholar]
- Yankeelov J. A., Jr, Mitchell C. D., Crawford T. H. A simple trimerization of 2,3-butanedione yielding a selective reagent for the modification of arginine in proteins. J Am Chem Soc. 1968 Mar 13;90(6):1664–1666. doi: 10.1021/ja01008a056. [DOI] [PubMed] [Google Scholar]

