Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1969 Aug;4(2):162–168. doi: 10.1128/jvi.4.2.162-168.1969

Abortive Infection of Shigella dysenteriae P2 by T2 Bacteriophage

Helene S Smith 1,2, Lewis I Pizer 1,2, Laird Pylkas 1,2, Seymour Lederberg 1,2
PMCID: PMC375851  PMID: 4896823

Abstract

We have investigated some of the biochemical events that accompany the abortive infection by T2 of Shigella dysenteriae lysogenized with the temperate phage P2. After infection with T2, protein and RNA synthesis continued for 3 to 5 min. The virus-induced enzyme, deoxycytidylate hydroxymethylase was produced in reduced amounts (15% of normal), and the extent of deoxyribonucleic acid (DNA) synthesis was 0.1% of that found with a nonlysogenic strain. Measurements of the production of acid-soluble fragments and sedimentation analyses failed to detect enzymatic degradation of the infecting viral DNA which could be specifically related to the presence of the prophage P2. Each interaction between T2 and a bacterium resulted in the death of the cell. This observation is consistent with results obtained with other types of bacteria which show that only when a nucleolytic attack occurs on T2 DNA does the cell have an increased capacity to survive after adsorption of T2.

Full text

PDF
162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTANI G. Lysogenic versus lytic cycle of phage multiplication. Cold Spring Harb Symp Quant Biol. 1953;18:65–70. doi: 10.1101/sqb.1953.018.01.014. [DOI] [PubMed] [Google Scholar]
  2. BOLLUM F. J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. J Biol Chem. 1959 Oct;234:2733–2734. [PubMed] [Google Scholar]
  3. Benzer S. FINE STRUCTURE OF A GENETIC REGION IN BACTERIOPHAGE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):344–354. doi: 10.1073/pnas.41.6.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COHEN S. S. Studies on controlling mechanisms in the metabolism of virus-infected bacteria. Cold Spring Harb Symp Quant Biol. 1953;18:221–235. doi: 10.1101/sqb.1953.018.01.033. [DOI] [PubMed] [Google Scholar]
  5. FUKASAWA T. THE COURSE OF INFECTION WITH ABNORMAL BACTERIOPHAGE T4 CONTAINING NON-GLUCOSYLATED DNA ON ESCHERICHIA COLI STRAINS. J Mol Biol. 1964 Aug;9:525–536. doi: 10.1016/s0022-2836(64)80224-2. [DOI] [PubMed] [Google Scholar]
  6. Fields K. L. Comparison of the action of colicins E1 and K on Escherichia coli with the effects of abortive infection by virulent bacteriophages. J Bacteriol. 1969 Jan;97(1):78–82. doi: 10.1128/jb.97.1.78-82.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frankel F. R. Studies on the nature of replicating DNA in T4-infected Escherichia coli. J Mol Biol. 1966 Jun;18(1):127–143. doi: 10.1016/s0022-2836(66)80081-5. [DOI] [PubMed] [Google Scholar]
  8. Furrow M. H., Pizer L. I. Phospholipid synthesis in Escherichia coli infected with T4 bacteriophages. J Virol. 1968 Jun;2(6):594–605. doi: 10.1128/jvi.2.6.594-605.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GAREN A. Physiological effects of rII mutations in bacteriophage T4. Virology. 1961 Jun;14:151–163. doi: 10.1016/0042-6822(61)90190-8. [DOI] [PubMed] [Google Scholar]
  10. HATTMAN S., FUKASAWA T. HOST-INDUCED MODIFICATION OF T-EVEN PHAGES DUE TO DEFECTIVE GLUCOSYLATION OF THEIR DNA. Proc Natl Acad Sci U S A. 1963 Aug;50:297–300. doi: 10.1073/pnas.50.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HATTMAN S. THE FUNCTIONING OF T-EVEN PHAGES WITH UNGLUCOSYLATED DNA IN RESTRICTING ESCHERICHIA COLI HOST CELLS. Virology. 1964 Nov;24:333–348. doi: 10.1016/0042-6822(64)90171-0. [DOI] [PubMed] [Google Scholar]
  12. Hattman S., Revel H. R., Luria S. E. Enzyme synthesis directed by nonglucosylated T-even bacteriophages in restrictive hosts. Virology. 1966 Nov;30(3):427–438. doi: 10.1016/0042-6822(66)90120-6. [DOI] [PubMed] [Google Scholar]
  13. Kozinski A. W., Kozinski P. B., James R. Molecular recombination in T4 bacteriophage deoxyribonucleic acid. I. Tertiary structure of early replicative and recombining deoxyribonucleic acid. J Virol. 1967 Aug;1(4):758–770. doi: 10.1128/jvi.1.4.758-770.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozinski A., Lorkiewicz Z. K. Early intracellular events in the replication of T4 phage DNA, IV. Host-mediated single-stranded breaks and repair in ultraviolet-damaged T4 DNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2109–2116. doi: 10.1073/pnas.58.5.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LEDERBERG S. Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology. 1957 Jun;3(3):496–513. doi: 10.1016/0042-6822(57)90006-5. [DOI] [PubMed] [Google Scholar]
  16. PIZER L. I., COHEN S. S. The synthesis of an enzyme and other polymers in abortive infection of Escherichia coli strain W. Biochim Biophys Acta. 1961 Oct 28;53:409–411. doi: 10.1016/0006-3002(61)90455-3. [DOI] [PubMed] [Google Scholar]
  17. PIZER L. I., COHEN S. S. Virus-induced acquisition of metabolic function. V. Purification and properties of the deoxycytidylate hydroxymethylase and studies on its origin. J Biol Chem. 1962 Apr;237:1251–1259. [PubMed] [Google Scholar]
  18. PUCK T. T., LEE H. H. Mechanism of cell wall penetration by viruses. I. An increase in host cell permeability induced by bacteriophage infection. J Exp Med. 1954 May 1;99(5):481–494. doi: 10.1084/jem.99.5.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pizer L. I., Smith H. S., Miovic M., Pylkas L. Effect of prophage W on the propagation of bacteriophages T2 and T4. J Virol. 1968 Nov;2(11):1339–1345. doi: 10.1128/jvi.2.11.1339-1345.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SHEDLOVSKY A., BRENNER S. A CHEMICAL BASIS FOR THE HOST-INDUCED MODIFICATION OF T-EVEN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1963 Aug;50:300–305. doi: 10.1073/pnas.50.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sekiguchi M. Studies on the physiological defect in rII mutants of bacteriophage T4. J Mol Biol. 1966 Apr;16(2):503–522. doi: 10.1016/s0022-2836(66)80188-2. [DOI] [PubMed] [Google Scholar]
  22. Smith H. S., Miovic M., Pizer L. I. Correlation between degradation of bacteriophage T2 deoxyribonucleic acid and the resistance of Escherichia coli to infection. J Virol. 1969 Aug;4(2):195–196. doi: 10.1128/jvi.4.2.195-196.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith H. S., Pizer L. I. Abortive infection of Escherichia coli strain W by T2 bacteriophage. J Mol Biol. 1968 Oct 14;37(1):131–149. doi: 10.1016/0022-2836(68)90078-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES