Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1969 Oct;4(4):400–407. doi: 10.1128/jvi.4.4.400-407.1969

φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis

Jeff E D Siegel 1,1, Masaki Hayashi 1
PMCID: PMC375888  PMID: 5823229

Abstract

Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type.

Full text

PDF
400

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BASSEL A., HAYASHI M., SPIEGELMAN S. THE ENZYMATIC SYNTHESIS OF A CIRCULAR DNA-RNA HYBRID. Proc Natl Acad Sci U S A. 1964 Sep;52:796–804. doi: 10.1073/pnas.52.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan R. N., Sugiura M., Hayashi M. DNA- dependent RNA-directed protein synthesis in vitro. I. Extent of genome transcription. Proc Natl Acad Sci U S A. 1969 Feb;62(2):483–489. doi: 10.1073/pnas.62.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAMBERLIN M., BERG P. MECHANISM OF RNA POLYMERASE ACTION: FORMATION OF DNA-RNA HYBRIDS WITH SINGLE-STRANDED TEMPLATES. J Mol Biol. 1964 Feb;8:297–313. doi: 10.1016/s0022-2836(64)80139-x. [DOI] [PubMed] [Google Scholar]
  4. Greenlee L. L., Sinsheimer R. L. The process of infection with bacteriophage phi X174. XVII. Effects of specific metabolic interruptions. J Mol Biol. 1968 Mar 14;32(2):303–320. doi: 10.1016/0022-2836(68)90011-9. [DOI] [PubMed] [Google Scholar]
  5. Hutchison C. A., 3rd, Sinsheimer R. L. The process of infection with bacteriophage phi-X174. X. Mutations in a phi-X Lysis gene. J Mol Biol. 1966 Jul;18(3):429–447. doi: 10.1016/s0022-2836(66)80035-9. [DOI] [PubMed] [Google Scholar]
  6. Knippers R., Komano T., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. XXI. Replication and fate of the replicative form. Proc Natl Acad Sci U S A. 1968 Feb;59(2):577–581. doi: 10.1073/pnas.59.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lindqvist B. H., Sinsheimer R. L. Process of infection with bacteriophage phi-X174. XIV. Studies on macromolecular synthesis during infection with a lysis-defective mutant. J Mol Biol. 1967 Aug 28;28(1):87–94. doi: 10.1016/s0022-2836(67)80079-2. [DOI] [PubMed] [Google Scholar]
  8. Lindqvist B. H., Sinsheimer R. L. The process of infection with bacteriophage phi-X174. XV. Bacteriophage DNA synthesis in abortive infections with a set of conditional lethal mutants. J Mol Biol. 1967 Nov 28;30(1):69–80. doi: 10.1016/0022-2836(67)90244-6. [DOI] [PubMed] [Google Scholar]
  9. SINSHEIMER R. L., LAWRENCE M. IN VITRO SYNTHESIS AND PROPERTIES OF A PHI-X DNA-RNA HYBRID. J Mol Biol. 1964 Feb;8:289–296. doi: 10.1016/s0022-2836(64)80138-8. [DOI] [PubMed] [Google Scholar]
  10. Siegel J. E., Hayashi M. N., Hayashi M. Phi-X-174 coat protein mutants affecting DNA synthesis. Biochem Biophys Res Commun. 1968 Jun 10;31(5):774–778. doi: 10.1016/0006-291x(68)90629-3. [DOI] [PubMed] [Google Scholar]
  11. Siegel J. E., Hayashi M. Complementary strand infectivity in phi X174 replicative form DNA. J Mol Biol. 1967 Aug 14;27(3):443–451. doi: 10.1016/0022-2836(67)90050-2. [DOI] [PubMed] [Google Scholar]
  12. Sinsheimer R. L. Bacteriophage phi-X174 and related viruses. Prog Nucleic Acid Res Mol Biol. 1968;8:115–169. [PubMed] [Google Scholar]
  13. TESSMAN E. S. COMPLEMENTATION GROUPS IN PHAGE S13. Virology. 1965 Feb;25:303–321. doi: 10.1016/0042-6822(65)90208-4. [DOI] [PubMed] [Google Scholar]
  14. TESSMAN I., PODDAR R. K., KUMAR S. IDENTIFICATION OF THE ALTERED BASES IN MUTATED SINGLE-STRANDED DNA. I. IN VITRO MUTAGENESIS BY HYDROXYLAMINE, ETHYL METHANESULFONATE AND NITROUS ACID. J Mol Biol. 1964 Aug;9:352–363. doi: 10.1016/s0022-2836(64)80212-6. [DOI] [PubMed] [Google Scholar]
  15. Tessman E. S. Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J Mol Biol. 1966 May;17(1):218–236. doi: 10.1016/s0022-2836(66)80104-3. [DOI] [PubMed] [Google Scholar]
  16. Tessman I., Tessman E. S. Functional units of phage S13: identification of two genes that determine the structure of the phage coat. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1459–1462. doi: 10.1073/pnas.55.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES