Abstract
Populations of transfer ribonucleic acid (tRNA) extracted from control and type 2 adenovirus (Ad2)-infected KB cells were compared. No consistent differences in acceptor activity for 11 amino acids were observed. Comparison of methylated albumin-kieselguhr (MAK) elution profiles of arginyl-tRNA from control and infected cells revealed a minor modification in that the proportion of arginyl-tRNA eluting at high salt concentration was somewhat greater in infected cells. No similar differences were observed in MAK elution profiles of aspartyl-, isoleucyl-, leucyl-, phenylalanyl-, seryl-, tyrosyl-, and valyl-tRNA. Hybridization of 4S RNA from infected cells labeled by incorporation of 3H-uridine with Ad2 deoxyribonucleic acid revealed the presence of a complementary species of RNA in this preparation. Hybridization of 3H-arginyl-tRNA and of 3H-aminoacyl-tRNA labeled by charging with 3H-arginine or a 3H-mixture of amino acids, respectively, failed to detect the presence of virus-specific tRNA in Ad2-infected cells.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker Y., Olshevsky U., Levitt J. The role of arginine in the replication of herpes simplex virus. J Gen Virol. 1967 Oct;1(4):471–478. doi: 10.1099/0022-1317-1-4-471. [DOI] [PubMed] [Google Scholar]
- Buck C. A., Nass M. M. Studies on mitochondrial tRNA from animal cells. I. A comparison of mitochondrial and cytoplasmic trna and aminoacyl-tRNA synthetases. J Mol Biol. 1969 Apr 14;41(1):67–82. doi: 10.1016/0022-2836(69)90126-0. [DOI] [PubMed] [Google Scholar]
- Doerfler W. Nonproductive infection of baby hamster kidney cells (BHK21) with adenovirus type 12. Virology. 1969 Aug;38(4):587–606. doi: 10.1016/0042-6822(69)90179-2. [DOI] [PubMed] [Google Scholar]
- EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
- Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
- HOAGLAND M. B., STEPHENSON M. L., SCOTT J. F., HECHT L. I., ZAMECNIK P. C. A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 1958 Mar;231(1):241–257. [PubMed] [Google Scholar]
- Kano-Sueoka T., Sueoka N. Modification of leucyl-sRNA after bacteriophage infection. J Mol Biol. 1966 Sep;20(1):183–209. doi: 10.1016/0022-2836(66)90124-0. [DOI] [PubMed] [Google Scholar]
- McFarlane E. S. Properties of the in vitro soluble RNA methylase activity of hamster tumors induced by adenovirus-12. Can J Microbiol. 1969 Feb;15(2):189–192. doi: 10.1139/m69-031. [DOI] [PubMed] [Google Scholar]
- Nass M. M., Buck C. A. Comparative hybridization of mitochondrial and cytoplasmic aminoacyl transfer RNA with mitochondrial DNA from rat liver. Proc Natl Acad Sci U S A. 1969 Feb;62(2):506–513. doi: 10.1073/pnas.62.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohe K., Weissman S. M., Cooke N. R. Studies on the origin of a low molecular weight ribonucleic acid from human cells infected with adenoviruses. J Biol Chem. 1969 Oct 10;244(19):5320–5332. [PubMed] [Google Scholar]
- Prage L., Pettersson U., Philipson L. Internal basic proteins in adenovirus. Virology. 1968 Nov;36(3):508–511. doi: 10.1016/0042-6822(68)90178-5. [DOI] [PubMed] [Google Scholar]
- Reich P. R., Forget B. G., Weissman S. M. RNA of low molecular weight in KB cells infected with adenovirus type 2. J Mol Biol. 1966 Jun;17(2):428–439. doi: 10.1016/s0022-2836(66)80153-5. [DOI] [PubMed] [Google Scholar]
- Rouse H. C., Schlesinger R. W. An arginine-dependent step in the maturation of type 2 adenovirus. Virology. 1967 Nov;33(3):513–522. doi: 10.1016/0042-6822(67)90128-6. [DOI] [PubMed] [Google Scholar]
- Russell W. C., Becker Y. A maturation factor for adenovirus. Virology. 1968 May;35(1):18–27. doi: 10.1016/0042-6822(68)90301-2. [DOI] [PubMed] [Google Scholar]
- SARIN P. S., ZAMECNIK P. C. ON THE STABILITY OF AMINOACYL-S-RNA TO NUCLEOPHILIC CATALYSIS. Biochim Biophys Acta. 1964 Dec 16;91:653–655. doi: 10.1016/0926-6550(64)90018-0. [DOI] [PubMed] [Google Scholar]
- SUEOKA N., KANO-SUEOKA T. A SPECIFIC MODIFICATION OF LEUCYL-SRNA OF ESCHERICHIA COLI AFTER PHAGE T2 INFECTION. Proc Natl Acad Sci U S A. 1964 Dec;52:1535–1540. doi: 10.1073/pnas.52.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SUEOKA N., YAMANE T. Fractionation of amino acyl-acceptor RNA on a methylated albumin column. Proc Natl Acad Sci U S A. 1962 Aug;48:1454–1461. doi: 10.1073/pnas.48.8.1454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subak-Sharpe H., Shepherd W. M., Hay J. Studies on sRNA coded by herpes virus. Cold Spring Harb Symp Quant Biol. 1966;31:583–594. doi: 10.1101/sqb.1966.031.01.076. [DOI] [PubMed] [Google Scholar]
- TANKERSLEY R. W., Jr AMINO ACID REQUIREMENTS OF HERPES SIMPLEX VIRUS IN HUMAN CELLS. J Bacteriol. 1964 Mar;87:609–613. doi: 10.1128/jb.87.3.609-613.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. B., Hsu W. T., Foft J. W., Scherberg N. H. Transfer RNA coded by the T4 bacteriophage genome. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114–121. doi: 10.1073/pnas.61.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
