Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1970 Jul;6(1):33–41. doi: 10.1128/jvi.6.1.33-41.1970

Heat-Sensitive Early Function in Induced λ Nsus Lysogens

Ronald A Cross 1, Margaret Lieb 1
PMCID: PMC376087  PMID: 4919341

Abstract

Mutations in gene N of λ prevent killing of the host bacterium after infection. However, derepression of Nsus prophages in nonpermissive (pm) bacteria results in death of the lysogens. When prophages in pm(λCItsA-Nsus) lysogens are derepressed by raising the temperature to 45 C, the cells remain viable as long as they are at 45 C. However, they cannot form colonies at 33 C unless they have been superinfected, at the high temperature, by λCI+-Nsus phage which produces repressor at 45 C. A large fraction of these “rescued,” heat-inducible lysogens are lysogenized by the superinfecting phage, but lysogenization is not required for rescue. In pm(λCItsA-Nsus) lysogens growing at 45 C, the rate of deoxyribonucleic acid (DNA) synthesis shows a characteristic increase after the temperature is lowered. This increased DNA synthesis, which is correlated with loss of rescue potential, does not occur as long as the cultures are maintained at 45 C.

Full text

PDF
33

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleyard R K. Segregation of Lambda Lysogenicity during Bacterial Recombination in Escherichia Coli K12. Genetics. 1954 Jul;39(4):429–439. doi: 10.1093/genetics/39.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROOKS K. STUDIES IN THE PHYSIOLOGICAL GENETICS OF SOME SUPPRESSOR-SENSITIVE MUTANTS OF BACTERIOPHAGE LAMBDA. Virology. 1965 Jul;26:489–499. doi: 10.1016/0042-6822(65)90011-5. [DOI] [PubMed] [Google Scholar]
  3. Brenner D. J., Groman N. B. Inhibition of coliphage reproduction after superinfection of induced lysogens. J Bacteriol. 1966 Dec;92(6):1727–1734. doi: 10.1128/jb.92.6.1727-1734.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  5. Cairns J., Davern C. I. Effect of 32P decay upon DNA synthesis by a radiation-sensitive strain of Escherichia coli. J Mol Biol. 1966 Jun;17(2):418–427. doi: 10.1016/s0022-2836(66)80152-3. [DOI] [PubMed] [Google Scholar]
  6. Cross R. A., Lieb M. Control of heat-inducible lambda bacteriophage. Genetics. 1967 Nov;57(3):531–547. doi: 10.1093/genetics/57.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Echolas H., Gingery R. Mutants of bacteriophage lambda defective in vegetative genetic recombination. J Mol Biol. 1968 Jul 14;34(2):239–249. doi: 10.1016/0022-2836(68)90249-0. [DOI] [PubMed] [Google Scholar]
  8. Eisen H. A., Fuerst C. R., Siminovitch L., Thomas R., Lambert L., Pereira da Silva L., Jacob F. Genetics and physiology of defective lysogeny in K12 (lambda): studies of early mutants. Virology. 1966 Oct;30(2):224–241. doi: 10.1016/0042-6822(66)90098-5. [DOI] [PubMed] [Google Scholar]
  9. Eisen H., Pereira da Silva L., Jacob F. The regulation and mechanism of DNA synthesis in bacteriophage lambda. Cold Spring Harb Symp Quant Biol. 1968;33:755–764. doi: 10.1101/sqb.1968.033.01.086. [DOI] [PubMed] [Google Scholar]
  10. Fischer-Fantuzzi L. Integration of lambda and lambda-b2 genomes in nonimmune host bacteria carrying a lambda cryptic prophage. Virology. 1967 May;32(1):18–32. doi: 10.1016/0042-6822(67)90248-6. [DOI] [PubMed] [Google Scholar]
  11. JACOB F., SUSSMAN R., MONOD J. [On the nature of the repressor ensuring the immunity of lysogenic bacteria]. C R Hebd Seances Acad Sci. 1962 Jun 13;254:4214–4216. [PubMed] [Google Scholar]
  12. Joyner A., Isaacs L. N., Echols H., Sly W. S. DNA replication and messenger RNA production after induction of wild-type lambda bacteriophage and lambda mutants. J Mol Biol. 1966 Aug;19(1):174–186. doi: 10.1016/s0022-2836(66)80059-1. [DOI] [PubMed] [Google Scholar]
  13. KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
  14. KELLENBERGER G., ZICHICHI M. L., WEIGLE J. A mutation affecting the DNA content of bacteriophage lambda and its lysogenizing properties. J Mol Biol. 1961 Aug;3:399–408. doi: 10.1016/s0022-2836(61)80053-3. [DOI] [PubMed] [Google Scholar]
  15. Konrad M. W. Dependence of "early" lambda bacteriophage RNA synthesis on bacteriophage-directed protein synthesis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):171–178. doi: 10.1073/pnas.59.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lieb M. Studies of heat-inducible lambda bacteriophage. I. Order of genetic sites and properties of mutant prophages. J Mol Biol. 1966 Mar;16(1):149–163. doi: 10.1016/s0022-2836(66)80269-3. [DOI] [PubMed] [Google Scholar]
  17. Lieb M. Studies of heat-inducible lambda mutants. II. Production of C-1 product by superinfecting lambda+ in heat-inducible lysogens. Virology. 1966 Jul;29(3):367–376. doi: 10.1016/0042-6822(66)90212-1. [DOI] [PubMed] [Google Scholar]
  18. Lieb M. Studies of heat-inducible lambda phage. IV. Conversion of host phenotype by a defective prophage. Virology. 1967 Apr;31(4):643–656. doi: 10.1016/0042-6822(67)90193-6. [DOI] [PubMed] [Google Scholar]
  19. Lieb M. Studies of heat-inducible lambda-phage. 3. Mutations in cistron N affecting heat induction. Genetics. 1966 Sep;54(3):835–844. doi: 10.1093/genetics/54.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Naono S., Gros F. Control and selectivity of lambda DNA transcription in lysogenic bacteria. Cold Spring Harb Symp Quant Biol. 1966;31:363–375. doi: 10.1101/sqb.1966.031.01.047. [DOI] [PubMed] [Google Scholar]
  21. Ogawa T., Tomizawa J. Absortive lysogenization of bacteriophage lambda b2 and residual immunity of non-lysogenic segregants. J Mol Biol. 1967 Jan 28;23(2):225–245. doi: 10.1016/s0022-2836(67)80030-5. [DOI] [PubMed] [Google Scholar]
  22. Ogawa T., Tomizawa J. Replication of bacteriophage DNA. I. Replication of DNA of lambda phage defective in early functions. J Mol Biol. 1968 Dec 14;38(2):217–225. doi: 10.1016/0022-2836(68)90407-5. [DOI] [PubMed] [Google Scholar]
  23. Pereira da Silva L., Eisen H., Jacob F. Sur la réplication du bactériophage lambda. C R Acad Sci Hebd Seances Acad Sci D. 1968 Feb 26;266(9):926–928. [PubMed] [Google Scholar]
  24. Pero J. Location of the phage lambda gene responsible for turning off lambda-exonuclease synthesis. Virology. 1970 Jan;40(1):65–71. doi: 10.1016/0042-6822(70)90379-x. [DOI] [PubMed] [Google Scholar]
  25. Protass J. J., Korn D. Function of the N cistron of bacteriophage lambda. Proc Natl Acad Sci U S A. 1966 May;55(5):1089–1095. doi: 10.1073/pnas.55.5.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Radding C. M., Shreffler D. C. Regulation of lambda exonuclease. II. Joint regulation of exonuclease and a new lambda antigen. J Mol Biol. 1966 Jul;18(2):251–261. doi: 10.1016/s0022-2836(66)80244-9. [DOI] [PubMed] [Google Scholar]
  27. Radding C. M., Szpirer J., Thomas R. THE STRUCTURAL GENE FOR lambda EXONUCLEASE. Proc Natl Acad Sci U S A. 1967 Feb;57(2):277–283. doi: 10.1073/pnas.57.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  29. Signer E. R., Weil J. Recombination in bacteriophage lambda. I. Mutants deficient in general recombination. J Mol Biol. 1968 Jul 14;34(2):261–271. doi: 10.1016/0022-2836(68)90251-9. [DOI] [PubMed] [Google Scholar]
  30. Skalka A., Butler B., Echols H. Genetic control of transcription during development of phage gamma. Proc Natl Acad Sci U S A. 1967 Aug;58(2):576–583. doi: 10.1073/pnas.58.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Taylor K., Hradecna Z., Szybalski W. Asymmetric distribution of the transcribing regions on the complementary strands of coliphage lambda DNA. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1618–1625. doi: 10.1073/pnas.57.6.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zissler J., Campbell A. The steric effect in lysogenization by bacteriophage lambda. IV. Superinfection of nonimmune lysogens. Virology. 1969 Mar;37(3):318–326. doi: 10.1016/0042-6822(69)90215-3. [DOI] [PubMed] [Google Scholar]
  33. Zissler J. Integration-negative (int) mutants of phage lambda. Virology. 1967 Jan;31(1):189–189. doi: 10.1016/0042-6822(67)90030-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES