Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1970 Sep;6(3):280–285. doi: 10.1128/jvi.6.3.280-285.1970

Compartmentalization of Pseudorabies Virus and Subvirion Components in BHK-21 Cells and in the Extracellular Fluid

Robert J Sydiskis 1
PMCID: PMC376120  PMID: 4921120

Abstract

The intracellular and extracellular localization of pseudorabies virions and subvirion components was determined at various stages in the replicative cycle. It was discovered that infectious pseudorabies virus appears first in the nucleus of the infected cell early in the infectious cycle but later accumulates in the cytoplasm. Subvirion components (nucleoids and nucleocapsids) are restricted to the nucleus, and only the complete virion is released from the infected cell.

Full text

PDF
280

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  3. MORGAN C., ROSE H. M., HOLDEN M., JONES E. P. Electron microscopic observations on the development of herpes simplex virus. J Exp Med. 1959 Oct 1;110:643–656. doi: 10.1084/jem.110.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Nii S., Morgan C., Rose H. M. Electron microscopy of herpes simplex virus. II. Sequence of development. J Virol. 1968 May;2(5):517–536. doi: 10.1128/jvi.2.5.517-536.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. STOKER M. G., SMITH K. M., ROSS R. W. Electron microscope studies of HeLa cells infected with herpes virus. J Gen Microbiol. 1958 Oct;19(2):244–249. doi: 10.1099/00221287-19-2-244. [DOI] [PubMed] [Google Scholar]
  6. Spring S. B., Roizman B. Herpes simplex virus products in productive and abortive infection. 3. Differentiation of infectious virus derived from nucleus and cytoplasm with respect to stability and size. J Virol. 1968 Oct;2(10):979–985. doi: 10.1128/jvi.2.10.979-985.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Spring S. B., Roizman B. Herpes simplex virus products in productive and abortive infection. I. Stabilization with formaldehyde and preliminary analyses by isopycnic centrifugation in CsCl. J Virol. 1967 Apr;1(2):294–301. doi: 10.1128/jvi.1.2.294-301.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Spring S. B., Roizman B., Schwartz J. Herpes simplex virus products in productive and abortive infection. II. Electron microscopic and immunological evidence for failure of virus envelopment as a cause of abortive infection. J Virol. 1968 Apr;2(4):384–392. doi: 10.1128/jvi.2.4.384-392.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sydiskis R. J. Precursor Products Found in Formaldehyde-fixed Lysates of BHK-21 Cells Infected with Pseudorabies Virus. J Virol. 1969 Sep;4(3):283–291. doi: 10.1128/jvi.4.3.283-291.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES