Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1970 Oct;6(4):381–392. doi: 10.1128/jvi.6.4.381-392.1970

Nucleic Acid Synthesis in Bacillus subtilis Infected with Bacteriophage β22

H Ernest Hemphill 1, H R Whiteley 1
PMCID: PMC376134  PMID: 4993332

Abstract

Changes in the synthesis of host and phage nucleic acid after infection of Bacillus subtilis with virulent bacteriophage β22 were analyzed by deoxyribonucleic acid (DNA)-DNA and ribonucleic acid (RNA)-DNA hybridization. Host DNA replication continued during the first third of the 55-min latent period and then ceased at approximately the time replication of the phage genome was initiated. Host-specific RNA was synthesized concurrently with phage RNA during the first half of the latent period but was repressed late in the infection. For much of the latent period, the population of phage-specific RNA changed continually as new species were transcribed and earlier species were repressed; detectable changes ceased coincidentally with the appearance of intracellular phage. Control over transcription of phage DNA was to some degree an intrinsic property of the interaction of B. subtilis DNA-dependent RNA polymerase and the phage genome, since only the early species of phage RNA were synthesized in vitro by B. subtilis polymerase and pure β22 DNA. In vitro transcription of late functions was demonstrated by using the endogenous RNA polymerase activity of the nucleoprotein complex (nuclear fraction) from infected cells.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolle A., Epstein R. H., Salser W., Geiduschek E. P. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J Mol Biol. 1968 Apr 28;33(2):339–362. doi: 10.1016/0022-2836(68)90193-9. [DOI] [PubMed] [Google Scholar]
  3. Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
  4. Brodetsky A. M., Romig W. R. Characterization of Bacillus subtilis bacteriophages. J Bacteriol. 1965 Dec;90(6):1655–1663. doi: 10.1128/jb.90.6.1655-1663.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brody E. N., Geiduschek E. P. Transcription of the bacteriophage T4 template. Detailed comparison of in vitro and in vivo transcripts. Biochemistry. 1970 Mar 17;9(6):1300–1309. doi: 10.1021/bi00808a002. [DOI] [PubMed] [Google Scholar]
  6. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. Factor stimulating transcription by RNA polymerase. Nature. 1969 Jan 4;221(5175):43–46. doi: 10.1038/221043a0. [DOI] [PubMed] [Google Scholar]
  7. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  8. Gage L. P., Geiduschek E. P. Repression of early messenger transcription in the development of a bacteriophage. J Mol Biol. 1967 Dec 14;30(2):435–440. [PubMed] [Google Scholar]
  9. Geiduschek E. P., Snyder L., Colvill A. J., Sarnat M. Selective synthesis of T-even bacteriophage early messenger in vitro. J Mol Biol. 1966 Aug;19(2):541–547. doi: 10.1016/s0022-2836(66)80021-9. [DOI] [PubMed] [Google Scholar]
  10. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  11. HALL B. D., NYGAARD A. P., GREEN M. H. CONTROL OF T2-SPECIFIC RNA SYNTHESIS. J Mol Biol. 1964 Jul;9:143–153. doi: 10.1016/s0022-2836(64)80096-6. [DOI] [PubMed] [Google Scholar]
  12. Hemphill H. E., Whiteley H. R., Brown L. R., Doi R. H. The effect of rifampin on the production of beta22 phage by Bacillus subtilis. Biochem Biophys Res Commun. 1969 Nov 6;37(4):559–566. doi: 10.1016/0006-291x(69)90845-6. [DOI] [PubMed] [Google Scholar]
  13. KALLEN R. G., SIMON M., MARMUR J. The new occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA:5-hydroxymethyl uracil. J Mol Biol. 1962 Aug;5:248–250. doi: 10.1016/s0022-2836(62)80087-4. [DOI] [PubMed] [Google Scholar]
  14. Mizuno S., Whiteley H. R. Nuclear fraction of Bacillus subtilis as a template for ribonucleic acid synthesis. J Bacteriol. 1968 Apr;95(4):1221–1237. doi: 10.1128/jb.95.4.1221-1237.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pène J. J. Host macromolecular synthesis in bacteriophage-infected Bacillus subtilis. Bacteriol Rev. 1968 Dec;32(4 Pt 1):379–386. [PMC free article] [PubMed] [Google Scholar]
  16. Pène J. J., Marmur J. Deoxyribonucleic acid replication and expression of early and late bacteriophage functions in Bacillus subtilis. J Virol. 1967 Feb;1(1):86–91. doi: 10.1128/jvi.1.1.86-91.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROMIG W. R., BRODETSKY A. M. Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J Bacteriol. 1961 Jul;82:135–141. doi: 10.1128/jb.82.1.135-141.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  19. Roscoe D. H. Synthesis of DNA in phage-infected Bacillus subtilis. Virology. 1969 Aug;38(4):527–537. doi: 10.1016/0042-6822(69)90173-1. [DOI] [PubMed] [Google Scholar]
  20. SCHERRER K., DARNELL J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem Biophys Res Commun. 1962 Jun 4;7:486–490. doi: 10.1016/0006-291x(62)90341-8. [DOI] [PubMed] [Google Scholar]
  21. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  22. Sonenshein A. L., Roscoe D. H. The course of phage phi-e infection in sporulating cells of Bacillus subtilis strain 3610. Virology. 1969 Oct;39(2):265–275. doi: 10.1016/0042-6822(69)90047-6. [DOI] [PubMed] [Google Scholar]
  23. Su S., Weinberg F., So A. G., Davie E. W. RNA polymerase and the shut-off of host RNA and protein synthesis in T4 phage infection. Nature. 1970 Jan 3;225(5227):62–63. doi: 10.1038/225062a0. [DOI] [PubMed] [Google Scholar]
  24. TAKAHASHI I. INCORPORATION OF BACTERIOPHAGE GENOME BY SPORES OF BACILLUS SUBTILIS. J Bacteriol. 1964 Jun;87:1499–1502. doi: 10.1128/jb.87.6.1499-1502.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Travers A. A. Positive control of transcription by a bacteriophage sigma factor. Nature. 1970 Mar 14;225(5237):1009–1012. doi: 10.1038/2251009a0. [DOI] [PubMed] [Google Scholar]
  26. VOLKIN E., ASTRACHAN L. Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology. 1956 Apr;2(2):149–161. doi: 10.1016/0042-6822(56)90016-2. [DOI] [PubMed] [Google Scholar]
  27. Walter G., Seifert W., Zillig W. Modified DNA-dependent RNA polymerase from E. coli infected with bacteriophage T4. Biochem Biophys Res Commun. 1968 Feb 15;30(3):240–247. doi: 10.1016/0006-291x(68)90441-5. [DOI] [PubMed] [Google Scholar]
  28. Wilson D. L., Geiduschek E. P. A template-selective inhibitor of in vitro transcription. Proc Natl Acad Sci U S A. 1969 Feb;62(2):514–520. doi: 10.1073/pnas.62.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yehle C. O., Doi R. H. Differential expression of bacteriophage genomes in vegetative and sporulating cells of Bacillus subtilis. J Virol. 1967 Oct;1(5):935–947. doi: 10.1128/jvi.1.5.935-947.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yehle C. O., Doi R. H. Stabilization of Bacillus subtilis phage with dimethylsulfoxide. Can J Microbiol. 1965 Aug;11(4):745–746. doi: 10.1139/m65-099. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES