Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1971 Nov;8(5):613–618. doi: 10.1128/jvi.8.5.613-618.1971

Control of Gene Function in Bacteriophage T4

III. Preventing the Shutoff of Early Enzyme Synthesis

Walter Sauerbier 1,2, Manfred Schweiger 1,2, Peter Herrlich 1,2
PMCID: PMC376238  PMID: 4943682

Abstract

Synthesis of early T4 protein, which is normally shut off at 10 min after infection, continues until lysis when host cells have been preinfected with T3 sam+. In host cells preinfected with T3 sam, synthesis of early enzymes is shut off as normal. Thus, S-adenosylmethionine is required for the turnoff of early T4 functions (at least when host cells have been preinfected with T3).

Full text

PDF
613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldi M. I., Haselkorn R. Ribosome-bound messenger RNA in T4-infected bacteria. J Mol Biol. 1967 Jul 14;27(1):193–195. doi: 10.1016/0022-2836(67)90360-9. [DOI] [PubMed] [Google Scholar]
  2. Dirksen M. L., Wiberg J. S., Koerner J. F., Buchanan J. M. EFFECT OF ULTRAVIOLET IRRADIATION OF BACTERIOPHAGE T2 ON ENZYME SYNTHESIS IN HOST CELLS. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1425–1430. doi: 10.1073/pnas.46.11.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dunn J. J., Bautz F. A., Bautz E. K. Different template specificities of phage T3 and T7 RNA polymerases. Nat New Biol. 1971 Mar 17;230(11):94–96. doi: 10.1038/newbio230094a0. [DOI] [PubMed] [Google Scholar]
  4. FLAKS J. G., LICHTENSTEIN J., COHEN S. S. Virus-induced acquisition of metabolic function. II. Studies on the origin of the deoxycytidylate hydroxymethylase of bacteriophage-infected E. coli. J Biol Chem. 1959 Jun;234(6):1507–1511. [PubMed] [Google Scholar]
  5. Friesen J. D., Dale B., Bode W. Presence of T4 "early" messenger RNA on polysomes late in infection. J Mol Biol. 1967 Sep 28;28(3):413–422. doi: 10.1016/s0022-2836(67)80090-1. [DOI] [PubMed] [Google Scholar]
  6. Gefter M., Hausmann R., Gold M., Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. X. Bacteriophage T3-induced S-adenosylmethionine cleavage. J Biol Chem. 1966 May 10;241(9):1995–2006. [PubMed] [Google Scholar]
  7. Gold L. M., Schweiger M. Synthesis of phage-specific alpha- and beta-glucosyl transferases directed by T-even DNA in vitro. Proc Natl Acad Sci U S A. 1969 Mar;62(3):892–898. doi: 10.1073/pnas.62.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HALL B. D., NYGAARD A. P., GREEN M. H. CONTROL OF T2-SPECIFIC RNA SYNTHESIS. J Mol Biol. 1964 Jul;9:143–153. doi: 10.1016/s0022-2836(64)80096-6. [DOI] [PubMed] [Google Scholar]
  9. HILL R. F. A radiation-sensitive mutant of Escherichia coli. Biochim Biophys Acta. 1958 Dec;30(3):636–637. doi: 10.1016/0006-3002(58)90112-4. [DOI] [PubMed] [Google Scholar]
  10. Hausmann R., Gomez B. Amber mutants of bacteriophages T3 and T7 defective in phage-directed deoxyribonucleic acid synthesis. J Virol. 1967 Aug;1(4):779–792. doi: 10.1128/jvi.1.4.779-792.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hausmann R. Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by co-infection with enzymatically incompetent bacteriophage. J Virol. 1967 Feb;1(1):57–63. doi: 10.1128/jvi.1.1.57-63.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herrlich P., Schweiger M. T3 and T7 bacteriophage deoxyribonucleic acid-directed enzyme synthesis in vitro. J Virol. 1970 Dec;6(6):750–753. doi: 10.1128/jvi.6.6.750-753.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KECK K., MAHLER H. R., FRASER D. Synthesis of deoxycytidine-5'-phosphate deaminase in Escherichia coli infected by T2 bacteriophage. Arch Biochem Biophys. 1960 Jan;86:85–88. doi: 10.1016/0003-9861(60)90373-8. [DOI] [PubMed] [Google Scholar]
  14. KLEIN A., SAUERBIER W. ROLE OF METHYLATION IN HOST CONTROLLED MODIFICATION OF PHAGE T1. Biochem Biophys Res Commun. 1965 Feb 3;18:440–445. doi: 10.1016/0006-291x(65)90728-x. [DOI] [PubMed] [Google Scholar]
  15. Schweiger M., Gold L. M. Bacteriophage T4 DNA-dependent in vitro synthesis of lysozyme. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1351–1358. doi: 10.1073/pnas.63.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schweiger M., Gold L. M. Escherichia coli and Bacillus subtilis phage deoxyribonucleic acid-directed deoxycytidylate deaminase synthesis in Escherichia coli extracts. J Biol Chem. 1970 Oct 10;245(19):5022–5025. [PubMed] [Google Scholar]
  17. Somerville R., Ebisuzaki K., Greenberg G. R. HYDROXYMETHYLDEOXYCYTIDYLATE KINASE FORMATION AFTER BACTERIOPHAGE INFECTION OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1959 Aug;45(8):1240–1245. doi: 10.1073/pnas.45.8.1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sueoka N., Kano-Sueoka T., Gartland W. J. Modification of sRNA and regulation of protein synthesis. Cold Spring Harb Symp Quant Biol. 1966;31:571–580. doi: 10.1101/sqb.1966.031.01.074. [DOI] [PubMed] [Google Scholar]
  19. Warner H. R., Lewis N. The synthesis of deoxycytidylate deaminase and dihydrofolate reductase and its control in Escherichia coli infected with bacteriophage T4 and T-4 amber mutants. Virology. 1966 May;29(1):172–175. doi: 10.1016/0042-6822(66)90208-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES