Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Nov;22(5):772–776. doi: 10.1128/am.22.5.772-776.1971

Influence of Temperature on Substrate and Energy Conversion in Pseudomonas fluorescens1

Randall H Mennett 1, T O M Nakayama 1
PMCID: PMC376416  PMID: 5002310

Abstract

The influence of temperature on yield, maintenance rate, growth rate, and conversion of calories to biomass was studied with Pseudomonas fluorescens grown in a chemostat. Maintenance and growth rate are influenced linearly with temperature. Both rates increased with increasing temperature and gave linear Arrhenius plots over a limited range. Cells harvested during the steady-state at each temperature were burned in a microcalorimeter. The number of kilocalories per gram (dry weight) of organism was not influenced significantly by the temperature during growth, indicating that the conversion of substrate calories into biomass is apparently regulated in the range of temperature studied.

Full text

PDF
772

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauman A. J., Simmonds P. G. Fatty acids and polar lipids of extremely thermophilic filamentous bacterial masses from two Yellowstone hot springs. J Bacteriol. 1969 May;98(2):528–531. doi: 10.1128/jb.98.2.528-531.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown C. M., Rose A. H. Effects of temperature on composition and cell volume of Candida utilis. J Bacteriol. 1969 Jan;97(1):261–270. doi: 10.1128/jb.97.1.261-272.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  4. Condon S., Ingraham J. L. Cold-sensitive mutation of Pseudomonas putida affecting enzyme synthesis at low temperature. J Bacteriol. 1967 Dec;94(6):1970–1981. doi: 10.1128/jb.94.6.1970-1981.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ECKER R. E., LOCKHART W. R. A theoretical basis for laboratory aeration. Appl Microbiol. 1961 Jan;9:25–31. doi: 10.1128/am.9.1.25-31.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ECKER R. E., LOCKHART W. R. Calibration of laboratory aeration apparatus. Appl Microbiol. 1959 Mar;7(2):102–105. doi: 10.1128/am.7.2.102-105.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisler W. J., Jr, Webb R. B. Electronically controlled continuous culture device. Appl Microbiol. 1968 Sep;16(9):1375–1380. doi: 10.1128/am.16.9.1375-1380.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foter M. J., Rahn O. Growth and Fermentation of Bacteria Near Their Minimum Temperature. J Bacteriol. 1936 Nov;32(5):485–497. doi: 10.1128/jb.32.5.485-497.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
  10. Hernandez E., Johnson M. J. Energy supply and cell yield in aerobically growth microorganisms. J Bacteriol. 1967 Oct;94(4):996–1001. doi: 10.1128/jb.94.4.996-1001.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MALLETTE M. F. Validity of the concept of energy of maintenance. Ann N Y Acad Sci. 1963 Jan 21;102:521–535. doi: 10.1111/j.1749-6632.1963.tb13658.x. [DOI] [PubMed] [Google Scholar]
  12. Mackechnie I., Dawes E. A. An evaluation of the pathways of metabolism of glucose, gluconate and 2-oxogluconate by Pseudomonas aeruginosa by measurement of molar growth yields. J Gen Microbiol. 1969 Mar;55(3):341–349. doi: 10.1099/00221287-55-3-341. [DOI] [PubMed] [Google Scholar]
  13. Mayberry W. R., Prochazka G. J., Payne W. J. Factors derived from studies of aerobic growth in minimal media. J Bacteriol. 1968 Oct;96(4):1424–1426. doi: 10.1128/jb.96.4.1424-1426.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayberry W. R., Prochazka G. J., Payne W. J. Growth yields of bacteria on selected organic compounds. Appl Microbiol. 1967 Nov;15(6):1332–1338. doi: 10.1128/am.15.6.1332-1338.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McCarty P. L. Thermodynamics of biological synthesis and growth. Air Water Pollut. 1965 Oct;9(10):621–639. [PubMed] [Google Scholar]
  16. NG H., INGRAHAM J. L., MARR A. G. Damage and derepression in Escherichia coli resulting from growth at low temperatures. J Bacteriol. 1962 Aug;84:331–339. doi: 10.1128/jb.84.2.331-339.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NOVICK A. Growth of bacteria. Annu Rev Microbiol. 1955;9:97–110. doi: 10.1146/annurev.mi.09.100155.000525. [DOI] [PubMed] [Google Scholar]
  18. Ng H. Effect of decreasing growth temperature on cell yield of Escherichia coli. J Bacteriol. 1969 Apr;98(1):232–237. doi: 10.1128/jb.98.1.232-237.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PIRT S. J. The oxygen requirement of growing cultures of an Aerobacter species determined by means of the continuous culture technique. J Gen Microbiol. 1957 Feb;16(1):59–75. doi: 10.1099/00221287-16-1-59. [DOI] [PubMed] [Google Scholar]
  20. Palumbo S. A., Witter L. D. Influence of temperature on glucose utilization by Pseudomonas fluorescens. Appl Microbiol. 1969 Aug;18(2):137–141. doi: 10.1128/am.18.2.137-141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Payne W. J. Energy yields and growth of heterotrophs. Annu Rev Microbiol. 1970;24:17–52. doi: 10.1146/annurev.mi.24.100170.000313. [DOI] [PubMed] [Google Scholar]
  22. SENEZ J. C. Some considerations on the energetics of bacterial growth. Bacteriol Rev. 1962 Jun;26:95–107. [PMC free article] [PubMed] [Google Scholar]
  23. Shaw M. K., Ingraham J. L. Fatty Acid Composition of Escherichia coli as a Possible Controlling Factor of the Minimal Growth Temperature. J Bacteriol. 1965 Jul;90(1):141–146. doi: 10.1128/jb.90.1.141-146.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WRIGHT D. N., LOCKHART W. R. ENVIRONMENTAL CONTROL OF CELL COMPOSITION IN ESCHERICHIA COLI. J Bacteriol. 1965 Apr;89:1026–1031. doi: 10.1128/jb.89.4.1026-1031.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES