Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1972 Sep;24(3):418–423. doi: 10.1128/am.24.3.418-423.1972

Ultrahigh-Temperature Activation of a Low-Temperature Bacillus subtilis Spore Germination System 1,2

D M Adams 1,3, F F Busta 1
PMCID: PMC376534  PMID: 4627968

Abstract

Exposure of Bacillus subtilis A spores to 115 to 125 C for several seconds activated a low-temperature germination system that remained dormant after a heat treatment that activated the normal l-alanine- and glucose-stimulated germination systems. The low-temperature germination system was characterized by an optimum temperature lower than that of the l-alanine or glucose germination systems (30 C versus 45 C), germination in the absence of exogenous germination stimulants, and the capacity for heat-induced deactivation and subsequent reactivation. The rates of activation at 115 to 125 C were exponential and were not influenced by a previous heat treatment that activated the l-alanine- or glucose-stimulated germination systems. Although activation of the low-temperature germination system was accompanied by suppression of l-alanine-stimulated germination, it did not appear to be a modification of the l-alanine germination system.

Full text

PDF
418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busta F. F., Adams D. M. Identification of a germination system involved in the heat injury of Bacillus subtilis spores. Appl Microbiol. 1972 Sep;24(3):412–417. doi: 10.1128/am.24.3.412-417.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edwards J. L., Jr, Busta F. F., Speck M. L. Heat injury of Bacillus subtilis spores at ultrahigh temperatures. Appl Microbiol. 1965 Nov;13(6):858–864. doi: 10.1128/am.13.6.858-864.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edwards J. L., Jr, Busta F. F., Speck M. L. Thermal inactivation characteristics of Bacillus subtilis spores at ultrahigh temperatures. Appl Microbiol. 1965 Nov;13(6):851–857. doi: 10.1128/am.13.6.851-857.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Futter B. V., Richardson G. Viability of clostridial spores and the requirements of damaged organisms. I. Method of colony count, period and temperature of incubation, and pH value of the medium. J Appl Bacteriol. 1970 Jun;33(2):321–330. doi: 10.1111/j.1365-2672.1970.tb02203.x. [DOI] [PubMed] [Google Scholar]
  5. HYATT M. T., LEVINSON H. S. Conditions affecting Bacillus megaterium spore germination in glucose or various nitrogenous compounds. J Bacteriol. 1962 Jun;83:1231–1237. doi: 10.1128/jb.83.6.1231-1237.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes P. K., Nags E. H., Levinson H. S. Concurrent Heat Activation and Suppression of Bacillus megaterium Spore Germination. J Bacteriol. 1965 Sep;90(3):827–828. doi: 10.1128/jb.90.3.827-828.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jaye M., Ordal Z. J. Germination response of spores of Bacillus megaterium after exposure to calcium dipicolinate at 60 degrees C. Can J Microbiol. 1966 Feb;12(1):199–201. doi: 10.1139/m66-026. [DOI] [PubMed] [Google Scholar]
  8. Lee W. H., Ordal Z. J. REVERSIBLE ACTIVATION FOR GERMINATION AND SUBSEQUENT CHANGES IN BACTERIAL SPORES. J Bacteriol. 1963 Jan;85(1):207–217. doi: 10.1128/jb.85.1.207-217.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roberts T. A. Symposium on bacterial spores: VII. Recovering spores damaged by heat, ionizing radiations or ethylene oxide. J Appl Bacteriol. 1970 Mar;33(1):74–94. doi: 10.1111/j.1365-2672.1970.tb05235.x. [DOI] [PubMed] [Google Scholar]
  10. SUGIYAMA H. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J Bacteriol. 1951 Jul;62(1):81–96. doi: 10.1128/jb.62.1.81-96.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES