Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1970 Feb;19(2):214–219. doi: 10.1128/am.19.2.214-219.1970

Effects of Pesticides on Nitrite Oxidation by Nitrobacter agilis1

C L Winely 1, C L San Clemente 1
PMCID: PMC376654  PMID: 4314375

Abstract

The influence of pesticides on the growth of Nitrobacter agilis in aerated cultures and on the respiration of N. agilis cell suspensions and cell-free extracts was studied. Two pesticides, aldrin and simazine, were not inhibitory to growth of Nitrobacter, but five compounds [isopropyl N-(3-chlorophenyl) carbamate (CIPC), chlordane, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDD), heptachlor, and lindane] prevented growth when added to the medium at a concentration of 10 μg/ml. Whereas CIPC and eptam prevented nitrite oxidation by cell suspensions, the addition of DDD and lindane resulted in only partial inhibition of the oxidation. Heptachlor and chlordane also caused only partial inhibition of oxidation, but were more toxic with cell-free extract nitrite oxidase. None of the pesticides inhibited the nitrate reductase activity of cell-free extracts, but most caused some repression of cytochrome c oxidase activity. Heptachlor was the most deleterious compound.

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEEM M. I., ALEXANDER M. Nutrition and physiology of Nitrobacter agilis. Appl Microbiol. 1960 Mar;8:80–84. doi: 10.1128/am.8.2.80-84.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aleem M. I. Mechanism of oxidative phosphorylation in the chemoautotroph Nitrobacter agilis. Biochim Biophys Acta. 1968 Oct 1;162(3):338–347. doi: 10.1016/0005-2728(68)90120-5. [DOI] [PubMed] [Google Scholar]
  3. Bartha R., Lanzilotta R. P., Pramer D. Stability and effects of some pesticides in soil. Appl Microbiol. 1967 Jan;15(1):67–75. doi: 10.1128/am.15.1.67-75.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chance B., Ernster L., Garland P. B., Lee C. P., Light P. A., Ohnishi T., Ragan C. I., Wong D. Flavoproteins of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 1967 May;57(5):1498–1505. doi: 10.1073/pnas.57.5.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FINSTEIN M. S., DELWICHE C. C. MOLYBDENUM AS A MICRONUTRIENT FOR NITROBACTER. J Bacteriol. 1965 Jan;89:123–128. doi: 10.1128/jb.89.1.123-128.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FLETCHER D. W., BOLLEN W. B. The effects of aldrin on soil microorganisms and some of their activities related to soil fertility. Appl Microbiol. 1954 Nov;2(6):349–354. doi: 10.1128/am.2.6.349-354.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GERONE P. J., WARD T. G., CHAPPELL W. A. Combined infections in mice with influenza virus and Diplococcus pneumoniae. Am J Hyg. 1957 Nov;66(3):331–341. doi: 10.1093/oxfordjournals.aje.a119906. [DOI] [PubMed] [Google Scholar]
  8. LEES H., SIMPSON J. R. The biochemistry of the nitrifying organisms. V. Nitrite oxidation by Nitrobacter. Biochem J. 1957 Feb;65(2):297–305. doi: 10.1042/bj0650297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lees H., Quastel J. H. Biochemistry of nitrification in soil: 1. Kinetics of, and the effects of poisons on, soil nitrification, as studied by a soil perfusion technique. (with an Addendum by H. Lees). Biochem J. 1946;40(5-6):803–815. doi: 10.1042/bj0400803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. QUASTEL J. H., SCHOLEFIELD P. G. Biochemistry of nitrification in soil. Bacteriol Rev. 1951 Mar;15(1):1–53. doi: 10.1128/br.15.1.1-53.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. QUASTEL J. H., SCHOLEFIELD P. G. Eurethanes and soil nitrification. Appl Microbiol. 1953 Nov;1(6):282–287. doi: 10.1128/am.1.6.282-287.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STRAAT P. A., NASON A. CHARACTERIZATION OF A NITRATE REDUCTASE FROM THE CHEMOAUTOTROPH NITROBACTER AGILIS. J Biol Chem. 1965 Mar;240:1412–1426. [PubMed] [Google Scholar]
  14. Smith A. J., Hoare D. S. Acetate assimilation by Nitrobacter agilis in relation to its "obligate autotrophy". J Bacteriol. 1968 Mar;95(3):844–855. doi: 10.1128/jb.95.3.844-855.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith A. J., London J., Stanier R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol. 1967 Oct;94(4):972–983. doi: 10.1128/jb.94.4.972-983.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES