Abstract
Streptomycin-dependent cholera vibrio strains were derived from Inaba, Ogawa, and NAG vibrios by the method of Mel. These phenotypes grew more slowly and attacked fermentable substances after a longer period of time than the streptomycin-sensitive parent strains. Rabbits injected with streptomycin-sensitive strains and their streptomycin-dependent forms showed homologous agglutinin production. Patas monkeys fed with 109 streptomycin-dependent strains shed them for 1 to 2 days without ill effect, whereas the same number of streptomycin-independent organisms caused disease. The possibility of the application of multiple doses of streptomycin-dependent organisms in oral immunization against cholera was considered.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brunschede H., Bremer H. Protein synthesis in Escherichia coli after irradiation with ultraviolet light. J Mol Biol. 1969 Apr 14;41(1):25–38. doi: 10.1016/0022-2836(69)90123-5. [DOI] [PubMed] [Google Scholar]
- Burrows W. Cholera toxins. Annu Rev Microbiol. 1968;22:245–268. doi: 10.1146/annurev.mi.22.100168.001333. [DOI] [PubMed] [Google Scholar]
- FEELEY J. C., PITTMAN M. Studies on the haemolytic activity of El Tor vibrios. Bull World Health Organ. 1963;28(3):347–356. [PMC free article] [PubMed] [Google Scholar]
- Felsenfeld O., Stegherr-Barrios A., Holmes J., Parrott M. W. Incorporation of phenylalanine and uridine by streptomycin-sensitive and streptomycin-dependent Vibrio cholerae Ogawa ribosomal particles. Res Commun Chem Pathol Pharmacol. 1970 Jan;1(1):9–15. [PubMed] [Google Scholar]
- GILBERT W. Polypeptide synthesis in Escherichia coli. I. Ribosomes and the active complex. J Mol Biol. 1963 May;6:374–388. doi: 10.1016/s0022-2836(63)80050-9. [DOI] [PubMed] [Google Scholar]
- Heremans J. F. Immunoglobulin formation and function in different tissues. Curr Top Microbiol Immunol. 1968;45:131–203. doi: 10.1007/978-3-642-50109-8_4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mel D. M., Arsić B. L., Nikolić B. D., Radovanić M. L. Studies on vaccination against bacillary dysentery. 4. Oral immunization with live monotypic and combined vaccines. Bull World Health Organ. 1968;39(3):375–380. [PMC free article] [PubMed] [Google Scholar]
- Ramming K. P., Pilch Y. H. Transfer of transplantation immunity by ribonucleic acid. Transplantation. 1969 Apr;7(4):296–299. doi: 10.1097/00007890-196904000-00010. [DOI] [PubMed] [Google Scholar]
- Reitman M. Infectivity and antigenicity of streptomycin-dependent Salmonella typhosa. J Infect Dis. 1967 Feb;117(1):101–107. doi: 10.1093/infdis/117.1.101. [DOI] [PubMed] [Google Scholar]
- Sergeev V. V., Taratorina O. M., Elkina S. I. Patogennye i immunogennye svoistva streptomitsinzavisimogo mutanta Salmenell gertnera. Zh Mikrobiol Epidemiol Immunobiol. 1967 Aug;44(8):56–60. [PubMed] [Google Scholar]