Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1970 Apr;19(4):624–628. doi: 10.1128/am.19.4.624-628.1970

Airborne Stability of Tailless Bacterial Viruses S-13 and MS-2

Edward J Dubovi 1, Thomas G Akers 1
PMCID: PMC376752  PMID: 4911441

Abstract

The effect of relative humidity (RH) on the airborne stability of two small bacterial viruses, S-13 and MS-2, was studied. Poorest recovery of S-13 was obtained at 50% RH. Humidification prior to aerosol sampling significantly increased the recovery of S-13 at RH deleterious to the airborne virus. A commercial preparation of MS-2 suspended in a buffered saline solution showed a rapid loss of viability at RH above 30%, whereas a laboratory preparation containing 1.3% tryptone showed high recoveries at all RH studied. Dilution of the commercial MS-2 into tryptone broth conferred stability on the airborne virus. Humidification prior to sampling significantly reduced the viable recovery from aerosols of commercial MS-2, whereas the laboratory preparation was unaffected.

Full text

PDF
624

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akers T. G., Bond S., Goldberg L. J. Effect of temperature and relative humidity on survival of airborne Columbia SK group viruses. Appl Microbiol. 1966 May;14(3):361–364. doi: 10.1128/am.14.3.361-364.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akers T. G., Hatch M. T. Survival of a picornavirus and its infectious ribonucleic acid after aerosolization. Appl Microbiol. 1968 Nov;16(11):1811–1813. doi: 10.1128/am.16.11.1811-1813.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benbough J. E. The effect of relative humidity on the survival of airborne Semliki forest virus. J Gen Virol. 1969 Jun;4(4):473–477. doi: 10.1099/0022-1317-4-4-473. [DOI] [PubMed] [Google Scholar]
  4. DE JONG J. G. THE SURVIVAL OF MEASLES VIRUS IN AIR, IN RELATION TO THE EPIDEMIOLOGY OF MEASLES. Arch Gesamte Virusforsch. 1965;16:97–102. doi: 10.1007/BF01253797. [DOI] [PubMed] [Google Scholar]
  5. DIMMICK R. L., HATCH M. T., NG J. A particle-sizing method for aerosols and fine powders. AMA Arch Ind Health. 1958 Jul;18(1):23–29. [PubMed] [Google Scholar]
  6. EHRLICH R., MILLER S., IDOINE L. S. EFFECTS OF ENVIRONMENTAL FACTORS ON THE SURVIVAL OF AIRBORNE T-3 COLIPHAGE. Appl Microbiol. 1964 Nov;12:479–482. doi: 10.1128/am.12.6.479-482.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FIERS W., SINSHEIMER R. L. The structure of the DNA of bacteriophage phi-X174. III. Ultracentrifugal evidence for a ring structure. J Mol Biol. 1962 Oct;5:424–434. doi: 10.1016/s0022-2836(62)80031-x. [DOI] [PubMed] [Google Scholar]
  8. GOLDBERG L. J., WATKINS H. M., BOERKE E. E., CHATIGNY M. A. The use of a rotating drum for the study of aerosols over extended periods of time. Am J Hyg. 1958 Jul;68(1):85–93. doi: 10.1093/oxfordjournals.aje.a119954. [DOI] [PubMed] [Google Scholar]
  9. HEMMES J. H., WINKLER K. C., KOOL S. M. Virus survival as a seasonal factor in influenza and poliomylitis. Antonie Van Leeuwenhoek. 1962;28:221–233. doi: 10.1007/BF02538737. [DOI] [PubMed] [Google Scholar]
  10. Happ J. W., Harstad J. B., Buchanan L. M. Effect of air ions on submicron t1 bacteriophage aerosols. Appl Microbiol. 1966 Nov;14(6):888–891. doi: 10.1128/am.14.6.888-891.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatch M. T., Dimmick R. L. Physiological responses of airborne bacteria to shifts in relative humidity. Bacteriol Rev. 1966 Sep;30(3):597–603. doi: 10.1128/br.30.3.597-603.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatch M. T., Warren J. C. Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique. Appl Microbiol. 1969 May;17(5):685–689. doi: 10.1128/am.17.5.685-689.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MACLEAN E. C., HALL C. E. Studies on bacteriophage phi-X174 and its DNA by electron microscopy. J Mol Biol. 1962 Mar;4:173–178. doi: 10.1016/s0022-2836(62)80049-7. [DOI] [PubMed] [Google Scholar]
  14. SCOTT D. W. SEROLOGICAL CROSS REACTIONS AMONG THE RNA-CONTAINING COLIPHAGES. Virology. 1965 May;26:85–88. doi: 10.1016/0042-6822(65)90028-0. [DOI] [PubMed] [Google Scholar]
  15. Songer J. R. Influence of relative humidity on the survival of some airborne viruses. Appl Microbiol. 1967 Jan;15(1):35–42. doi: 10.1128/am.15.1.35-42.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TESSMAN E. S. COMPLEMENTATION GROUPS IN PHAGE S13. Virology. 1965 Feb;25:303–321. doi: 10.1016/0042-6822(65)90208-4. [DOI] [PubMed] [Google Scholar]
  17. TESSMAN I. Some unusual properties of the nucleic acid in bacteriophages S13 and phi X174. Virology. 1959 Mar;7(3):263–275. doi: 10.1016/0042-6822(59)90197-7. [DOI] [PubMed] [Google Scholar]
  18. Vasquez C., Granboulan N., Franklin R. M. Structure of the ribonucleic acid bacteriophage R17. J Bacteriol. 1966 Dec;92(6):1779–1786. doi: 10.1128/jb.92.6.1779-1786.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Warren J. C., Akers T. G., Dubovi E. J. Effect of prehumidification on sampling of selected airborne viruses. Appl Microbiol. 1969 Nov;18(5):893–896. doi: 10.1128/am.18.5.893-896.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Jong J. C., Winkler K. C. The inactivation of poliovirus in aerosols. J Hyg (Lond) 1968 Dec;66(4):557–565. doi: 10.1017/s0022172400028308. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES