Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1970 Oct;20(4):567–572. doi: 10.1128/am.20.4.567-572.1970

Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

Peter G Simmonds 1
PMCID: PMC376990  PMID: 16349890

Abstract

Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life.

Full text

PDF
567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr Submerged culture of Micrococcus lysodeikticus for large-scale production of cells. Science. 1955 Nov 25;122(3178):1016–1016. doi: 10.1126/science.122.3178.1016. [DOI] [PubMed] [Google Scholar]
  2. Hubbard J. S., Hobby G. L., Horowitz N. H., Geiger P. J., Morelli F. A. Measurement of CO(2) Assimilation in Soils: an Experiment for the Biological Exploration of Mars. Appl Microbiol. 1970 Jan;19(1):32–38. doi: 10.1128/am.19.1.32-38.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. King E. A., Jr, Schonfeld E., Richardson K. A., Eldridge J. S. Meteorite fail at pueblito de allende, chihuahua, Mexico: preliminary information. Science. 1969 Feb 28;163(3870):928–929. doi: 10.1126/science.163.3870.928. [DOI] [PubMed] [Google Scholar]
  4. Levin G. V., Heim A. H., Thompson M. F., Beem D. R., Horowitz N. H. "Gulliver", an experiment for extraterrestrial life detection and analysis. Life Sci Space Res. 1964;2:124–132. [PubMed] [Google Scholar]
  5. Merek E. L., Oyama V. I. Analysis of methods for growth detection in the search for extraterrestrial life. Appl Microbiol. 1968 May;16(5):724–731. doi: 10.1128/am.16.5.724-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Oró J., Tornabene T. Bacterial Contamination of Some Carbonaceous Meteorites. Science. 1965 Nov 19;150(3699):1046–1048. doi: 10.1126/science.150.3699.1046. [DOI] [PubMed] [Google Scholar]
  7. Reiner E. Identification of bacterial strains by pyrolysis-gas-liquid chromatography. Nature. 1965 Jun 19;206(990):1272–1273. doi: 10.1038/2061272b0. [DOI] [PubMed] [Google Scholar]
  8. Simmonds P. G., Bauman A. J., Bollin E. M., Gelpi E., Oró J. The unextractable organic fraction of the pueblito de allende meteorite: evidence for its indigenous nature. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1027–1034. doi: 10.1073/pnas.64.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. VISHNIAC W. Extraterrestrial microbiology. Aerosp Med. 1960 Aug;31:678–680. [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES