Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 15;69(Pt 7):o1100. doi: 10.1107/S1600536813015365

(−)-Norfluoro­curarine ethanol monosolvate

Shahobiddin M Adizov a,*, Jamshid Ashurov b, Zokir Karimov c, Pattax Kh Yuldashev a, Bakhodir Tashkhodjaev a
PMCID: PMC3770376  PMID: 24046661

Abstract

The title compound, C19H20N2O·C2H5OH, is an ethanol solvate of an indol alkaloid which was extracted from the plant Vinca erecta. The fused piperidine ring adopts an approximate boat conformation and the pyrrolidine ring an envelope conformation with one of the methyl­ene C atoms at the flap. An intra­molecular N—H⋯O hydrogen bond forms an S6 ring motif. In the crystal, norfulorocurarine and ethanol mol­ecules are linked into a chain along the c-axis direction through N—H⋯O and O—H⋯N hydrogen bonds.

Related literature  

For the biological activity of plants containing norfluoro­curarine class alkaloids, see: Lavrenova & Lavrenov (1997). For the isolation of norfluoro­curarine from the plant Vinca erecta, see: Yunusov & Yuldashev (1952, 1957). For the physical properties and crystal structures of several norfluoro­curarine solvates, see: Tashkhodjaev et al. (2011).graphic file with name e-69-o1100-scheme1.jpg

Experimental  

Crystal data  

  • C19H20N2O·C2H6O

  • M r = 338.44

  • Orthorhombic, Inline graphic

  • a = 7.0138 (5) Å

  • b = 16.090 (1) Å

  • c = 16.490 (2) Å

  • V = 1860.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.60 × 0.30 × 0.20 mm

Data collection  

  • Oxford Xcalibur, Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.801, T max = 0.884

  • 5608 measured reflections

  • 3178 independent reflections

  • 2393 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.142

  • S = 0.99

  • 3178 reflections

  • 237 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, GLOBAL. DOI: 10.1107/S1600536813015365/is5277sup1.cif

e-69-o1100-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015365/is5277Isup2.hkl

e-69-o1100-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.87 (3) 2.31 (3) 2.785 (4) 115 (3)
N1—H1⋯O2 0.87 (3) 2.17 (3) 2.961 (4) 152 (3)
O2—H2⋯N4i 0.96 (5) 1.85 (5) 2.805 (4) 172 (5)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant No. FA-F7-T185)

supplementary crystallographic information

Comment

Because of possessing high biological activity, plants containing norfluorocurarine class alkaloids have been widely used in traditional medicine. A number of plants as Vinca major L. and Vinca herbacea Waldst. et Kit. are examples which are used as a healing agent in traditional medicine (Lavrenova et al., 1997). Norfluorocurarine for the first time was extracted from the root of Vinca erecta and called vincanine (Yunusov & Yuldashev, 1952). Later the alkaloid was extraxted from the upper parts of the same plant (Yunusov & Yuldashev, 1957).

Earlier unsolvated crystal form of (-)-norfluorocurarine was obtained from acetone and stereochemistry studied by Tashkhodjaev et al. (2011). When we used ethanol as a solvent, XRD experiments showed the solvated structure in the molar ratio 1:1. Crystals which were obtained in acetone and in ethanol showed the same absolute configuration of alkaloid molecule. But the crystal packing and intermolecular bonds are quite different.

In the molecule, the carbonyl group is oriented to N1—H group. The torsion angle of C2═C16—C17═O1 atoms is -11.7 (5)°. Therefore, the carbonyl group and N1—H group form an intramolecular hydrogen bond N1—H···O1═ C17 (Table 1). In the crystal, the hydroxyl group of solvated ethanol molecules forms intermolecular hydrogen bonds with norfluorocurarine N1 and N4 atoms (Table 1). The hydrogen bonds links the norfluorocurarine and ethanol molecules along the c axis.

Experimental

The title compound was isolated from the chloroform fraction of the plant Vinca erecta by a known method (Yunusov et al., 1957). Norflurocurarine was dissolved in ethanol and evaporated in room temperature and obtained suitable for X-ray crystals. Since the crystal was unstable in air, we covered it with epoxide glue.

Refinement

The H atoms bonded to N1 and O2 were located in a difference Fourier map and refined isotropically. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.98 Å for CH, 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C19H20N2O·C2H6O F(000) = 728
Mr = 338.44 Dx = 1.208 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2ab Cell parameters from 1783 reflections
a = 7.0138 (5) Å θ = 3.8–75.7°
b = 16.090 (1) Å µ = 0.62 mm1
c = 16.490 (2) Å T = 293 K
V = 1860.9 (3) Å3 Prysmatic, orange
Z = 4 0.60 × 0.30 × 0.20 mm

Data collection

Oxford Xcalibur, Ruby diffractometer 3178 independent reflections
Radiation source: fine-focus sealed tube 2393 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.2576 pixels mm-1 θmax = 70.0°, θmin = 3.8°
ω–scan h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −19→17
Tmin = 0.801, Tmax = 0.884 l = −18→20
5608 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0858P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
3178 reflections Δρmax = 0.33 e Å3
237 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0029 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3603 (4) 0.42899 (18) 0.25960 (15) 0.0803 (8)
N1 0.3795 (4) 0.54279 (16) 0.38661 (17) 0.0502 (6)
C2 0.2579 (4) 0.48488 (18) 0.41767 (17) 0.0449 (6)
C3 0.1580 (4) 0.44089 (18) 0.56238 (18) 0.0480 (7)
H3A 0.2381 0.4495 0.6103 0.058*
N4 −0.0460 (3) 0.44531 (15) 0.58692 (15) 0.0497 (6)
C5 −0.1003 (4) 0.53164 (17) 0.57301 (18) 0.0502 (7)
H5A −0.0557 0.5667 0.6169 0.060*
H5B −0.2378 0.5368 0.5690 0.060*
C6 −0.0061 (4) 0.55619 (17) 0.49369 (18) 0.0458 (7)
H6A 0.0052 0.6161 0.4890 0.055*
H6B −0.0769 0.5350 0.4475 0.055*
C7 0.1943 (4) 0.51410 (16) 0.50026 (16) 0.0415 (6)
C8 0.3434 (4) 0.57872 (15) 0.51991 (17) 0.0429 (6)
C9 0.3820 (4) 0.62291 (17) 0.58936 (18) 0.0483 (7)
H9A 0.3178 0.6114 0.6374 0.058*
C10 0.5188 (5) 0.68503 (18) 0.5862 (2) 0.0548 (8)
H10A 0.5490 0.7144 0.6330 0.066*
C11 0.6111 (4) 0.70392 (17) 0.5142 (2) 0.0545 (8)
H11A 0.7014 0.7463 0.5134 0.065*
C12 0.5718 (4) 0.66105 (18) 0.4433 (2) 0.0519 (8)
H12A 0.6323 0.6740 0.3948 0.062*
C13 0.4380 (4) 0.59779 (17) 0.44827 (19) 0.0451 (6)
C14 0.2033 (5) 0.35663 (17) 0.5262 (2) 0.0561 (8)
H14A 0.1569 0.3129 0.5615 0.067*
H14B 0.3401 0.3502 0.5203 0.067*
C15 0.1066 (5) 0.35033 (17) 0.4430 (2) 0.0542 (8)
H15A 0.1239 0.2937 0.4224 0.065*
C16 0.2053 (4) 0.41012 (19) 0.3855 (2) 0.0507 (7)
C17 0.2757 (5) 0.3843 (2) 0.3081 (2) 0.0644 (9)
H17A 0.2557 0.3293 0.2932 0.077*
C18 −0.2094 (6) 0.3305 (2) 0.3113 (2) 0.0717 (10)
H18A −0.3063 0.2909 0.2970 0.108*
H18B −0.0862 0.3049 0.3064 0.108*
H18C −0.2167 0.3774 0.2755 0.108*
C19 −0.2388 (5) 0.35864 (19) 0.3968 (2) 0.0591 (8)
H19A −0.3632 0.3725 0.4110 0.071*
C20 −0.1099 (5) 0.36621 (16) 0.4544 (2) 0.0519 (7)
C21 −0.1658 (4) 0.3855 (2) 0.5405 (2) 0.0578 (8)
H21A −0.2951 0.4069 0.5398 0.069*
H21B −0.1682 0.3336 0.5703 0.069*
O2 0.6272 (5) 0.5922 (2) 0.2494 (2) 0.0966 (10)
C22 0.8184 (10) 0.5554 (3) 0.2572 (3) 0.122 (2)
H22A 0.8317 0.5300 0.3102 0.146*
H22B 0.8352 0.5125 0.2165 0.146*
C23 0.9609 (10) 0.6183 (5) 0.2469 (4) 0.142 (2)
H23A 1.0852 0.5935 0.2498 0.213*
H23B 0.9482 0.6591 0.2890 0.213*
H23C 0.9449 0.6445 0.1951 0.213*
H1 0.428 (5) 0.544 (2) 0.338 (2) 0.073 (12)*
H2 0.599 (8) 0.585 (3) 0.193 (3) 0.125 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0735 (16) 0.1134 (19) 0.0539 (16) −0.0183 (17) 0.0078 (14) −0.0189 (14)
N1 0.0464 (13) 0.0663 (14) 0.0377 (15) −0.0053 (12) 0.0064 (12) 0.0009 (11)
C2 0.0343 (13) 0.0568 (14) 0.0435 (17) 0.0022 (13) −0.0031 (12) 0.0060 (12)
C3 0.0483 (15) 0.0554 (15) 0.0403 (17) −0.0032 (13) −0.0033 (13) 0.0104 (12)
N4 0.0471 (13) 0.0575 (13) 0.0446 (15) −0.0064 (11) 0.0011 (11) 0.0065 (11)
C5 0.0431 (15) 0.0573 (16) 0.0503 (19) 0.0014 (13) 0.0048 (13) 0.0017 (13)
C6 0.0386 (13) 0.0491 (14) 0.0496 (19) 0.0003 (12) −0.0025 (13) 0.0056 (13)
C7 0.0421 (14) 0.0448 (12) 0.0374 (16) 0.0035 (11) 0.0002 (12) 0.0046 (11)
C8 0.0391 (14) 0.0467 (14) 0.0429 (16) 0.0034 (12) 0.0034 (12) 0.0068 (11)
C9 0.0463 (15) 0.0536 (15) 0.0452 (17) 0.0026 (14) 0.0017 (14) −0.0012 (12)
C10 0.0530 (18) 0.0528 (16) 0.059 (2) 0.0033 (14) −0.0081 (16) −0.0091 (15)
C11 0.0400 (15) 0.0482 (14) 0.075 (2) −0.0026 (13) −0.0006 (16) 0.0034 (14)
C12 0.0408 (15) 0.0559 (16) 0.059 (2) −0.0014 (13) 0.0056 (15) 0.0046 (14)
C13 0.0402 (13) 0.0517 (14) 0.0433 (17) 0.0034 (12) 0.0011 (13) 0.0033 (12)
C14 0.0549 (18) 0.0500 (15) 0.063 (2) 0.0010 (14) −0.0056 (16) 0.0103 (14)
C15 0.0532 (17) 0.0443 (13) 0.065 (2) 0.0029 (13) −0.0015 (17) −0.0026 (13)
C16 0.0426 (14) 0.0571 (16) 0.0523 (18) 0.0017 (13) −0.0007 (14) −0.0054 (14)
C17 0.0554 (18) 0.074 (2) 0.063 (2) −0.0033 (18) −0.0025 (18) −0.0231 (17)
C18 0.067 (2) 0.074 (2) 0.074 (3) −0.0043 (19) −0.007 (2) −0.0130 (18)
C19 0.0529 (18) 0.0570 (16) 0.067 (2) −0.0049 (15) 0.0005 (17) −0.0034 (15)
C20 0.0522 (17) 0.0448 (14) 0.059 (2) −0.0074 (13) 0.0003 (16) 0.0029 (13)
C21 0.0508 (17) 0.0622 (17) 0.061 (2) −0.0128 (14) 0.0042 (16) 0.0074 (15)
O2 0.0799 (19) 0.159 (3) 0.0515 (18) −0.028 (2) 0.0055 (16) −0.0156 (18)
C22 0.194 (6) 0.102 (3) 0.068 (3) −0.011 (4) −0.040 (4) 0.007 (3)
C23 0.128 (5) 0.167 (6) 0.132 (5) −0.044 (4) 0.007 (4) −0.002 (5)

Geometric parameters (Å, º)

O1—C17 1.228 (4) C12—C13 1.387 (4)
N1—C2 1.363 (4) C12—H12A 0.9300
N1—C13 1.409 (4) C14—C15 1.533 (5)
N1—H1 0.87 (4) C14—H14A 0.9700
C2—C16 1.365 (4) C14—H14B 0.9700
C2—C7 1.508 (4) C15—C16 1.518 (4)
C3—N4 1.489 (4) C15—C20 1.551 (5)
C3—C14 1.515 (4) C15—H15A 0.9800
C3—C7 1.582 (3) C16—C17 1.431 (5)
C3—H3A 0.9800 C17—H17A 0.9300
N4—C5 1.459 (4) C18—C19 1.496 (5)
N4—C21 1.489 (4) C18—H18A 0.9600
C5—C6 1.518 (4) C18—H18B 0.9600
C5—H5A 0.9700 C18—H18C 0.9600
C5—H5B 0.9700 C19—C20 1.317 (5)
C6—C7 1.564 (4) C19—H19A 0.9300
C6—H6A 0.9700 C20—C21 1.505 (5)
C6—H6B 0.9700 C21—H21A 0.9700
C7—C8 1.509 (4) C21—H21B 0.9700
C8—C9 1.375 (4) O2—C22 1.471 (7)
C8—C13 1.389 (4) O2—H2 0.95 (5)
C9—C10 1.387 (4) C22—C23 1.433 (8)
C9—H9A 0.9300 C22—H22A 0.9700
C10—C11 1.386 (4) C22—H22B 0.9700
C10—H10A 0.9300 C23—H23A 0.9600
C11—C12 1.384 (4) C23—H23B 0.9600
C11—H11A 0.9300 C23—H23C 0.9600
C2—N1—C13 109.9 (3) C8—C13—N1 109.6 (2)
C2—N1—H1 128 (2) C3—C14—C15 108.6 (2)
C13—N1—H1 122 (2) C3—C14—H14A 110.0
N1—C2—C16 128.7 (3) C15—C14—H14A 110.0
N1—C2—C7 108.1 (2) C3—C14—H14B 110.0
C16—C2—C7 123.0 (3) C15—C14—H14B 110.0
N4—C3—C14 110.6 (2) H14A—C14—H14B 108.4
N4—C3—C7 107.2 (2) C16—C15—C14 108.3 (3)
C14—C3—C7 112.2 (2) C16—C15—C20 114.7 (2)
N4—C3—H3A 109.0 C14—C15—C20 108.3 (3)
C14—C3—H3A 109.0 C16—C15—H15A 108.4
C7—C3—H3A 109.0 C14—C15—H15A 108.4
C5—N4—C3 104.7 (2) C20—C15—H15A 108.4
C5—N4—C21 112.8 (2) C2—C16—C17 120.6 (3)
C3—N4—C21 111.8 (2) C2—C16—C15 116.1 (3)
N4—C5—C6 105.6 (2) C17—C16—C15 122.1 (3)
N4—C5—H5A 110.6 O1—C17—C16 125.3 (3)
C6—C5—H5A 110.6 O1—C17—H17A 117.3
N4—C5—H5B 110.6 C16—C17—H17A 117.3
C6—C5—H5B 110.6 C19—C18—H18A 109.5
H5A—C5—H5B 108.7 C19—C18—H18B 109.5
C5—C6—C7 102.6 (2) H18A—C18—H18B 109.5
C5—C6—H6A 111.2 C19—C18—H18C 109.5
C7—C6—H6A 111.2 H18A—C18—H18C 109.5
C5—C6—H6B 111.2 H18B—C18—H18C 109.5
C7—C6—H6B 111.2 C20—C19—C18 127.8 (3)
H6A—C6—H6B 109.2 C20—C19—H19A 116.1
C2—C7—C8 101.8 (2) C18—C19—H19A 116.1
C2—C7—C6 109.8 (2) C19—C20—C21 121.4 (3)
C8—C7—C6 109.8 (2) C19—C20—C15 124.7 (3)
C2—C7—C3 113.6 (2) C21—C20—C15 113.7 (3)
C8—C7—C3 119.0 (2) N4—C21—C20 118.1 (2)
C6—C7—C3 102.9 (2) N4—C21—H21A 107.8
C9—C8—C13 120.0 (3) C20—C21—H21A 107.8
C9—C8—C7 132.2 (3) N4—C21—H21B 107.8
C13—C8—C7 107.5 (2) C20—C21—H21B 107.8
C8—C9—C10 118.5 (3) H21A—C21—H21B 107.1
C8—C9—H9A 120.7 C22—O2—H2 103 (3)
C10—C9—H9A 120.7 C23—C22—O2 110.0 (5)
C11—C10—C9 120.9 (3) C23—C22—H22A 109.7
C11—C10—H10A 119.5 O2—C22—H22A 109.7
C9—C10—H10A 119.5 C23—C22—H22B 109.7
C12—C11—C10 121.3 (3) O2—C22—H22B 109.7
C12—C11—H11A 119.3 H22A—C22—H22B 108.2
C10—C11—H11A 119.3 C22—C23—H23A 109.5
C11—C12—C13 116.8 (3) C22—C23—H23B 109.5
C11—C12—H12A 121.6 H23A—C23—H23B 109.5
C13—C12—H12A 121.6 C22—C23—H23C 109.5
C12—C13—C8 122.4 (3) H23A—C23—H23C 109.5
C12—C13—N1 128.0 (3) H23B—C23—H23C 109.5
C13—N1—C2—C16 −162.4 (3) C10—C11—C12—C13 −0.9 (4)
C13—N1—C2—C7 13.9 (3) C11—C12—C13—C8 1.4 (4)
C14—C3—N4—C5 −146.6 (2) C11—C12—C13—N1 −176.8 (3)
C7—C3—N4—C5 −24.0 (3) C9—C8—C13—C12 −0.4 (4)
C14—C3—N4—C21 −24.2 (3) C7—C8—C13—C12 173.6 (2)
C7—C3—N4—C21 98.4 (3) C9—C8—C13—N1 178.1 (2)
C3—N4—C5—C6 40.5 (3) C7—C8—C13—N1 −7.9 (3)
C21—N4—C5—C6 −81.3 (3) C2—N1—C13—C12 174.5 (3)
N4—C5—C6—C7 −40.3 (3) C2—N1—C13—C8 −3.9 (3)
N1—C2—C7—C8 −17.6 (3) N4—C3—C14—C15 70.8 (3)
C16—C2—C7—C8 159.0 (3) C7—C3—C14—C15 −48.7 (3)
N1—C2—C7—C6 98.7 (3) C3—C14—C15—C16 68.8 (3)
C16—C2—C7—C6 −84.7 (3) C3—C14—C15—C20 −56.2 (3)
N1—C2—C7—C3 −146.8 (2) N1—C2—C16—C17 −1.8 (5)
C16—C2—C7—C3 29.8 (4) C7—C2—C16—C17 −177.7 (3)
C5—C6—C7—C2 145.0 (2) N1—C2—C16—C15 165.5 (3)
C5—C6—C7—C8 −104.0 (2) C7—C2—C16—C15 −10.3 (4)
C5—C6—C7—C3 23.7 (3) C14—C15—C16—C2 −38.9 (4)
N4—C3—C7—C2 −119.1 (3) C20—C15—C16—C2 82.2 (3)
C14—C3—C7—C2 2.4 (3) C14—C15—C16—C17 128.2 (3)
N4—C3—C7—C8 121.1 (3) C20—C15—C16—C17 −110.7 (3)
C14—C3—C7—C8 −117.4 (3) C2—C16—C17—O1 −11.7 (5)
N4—C3—C7—C6 −0.6 (3) C15—C16—C17—O1 −178.3 (3)
C14—C3—C7—C6 120.9 (3) C18—C19—C20—C21 −172.5 (3)
C2—C7—C8—C9 −171.9 (3) C18—C19—C20—C15 2.8 (5)
C6—C7—C8—C9 71.9 (4) C16—C15—C20—C19 64.9 (4)
C3—C7—C8—C9 −46.2 (4) C14—C15—C20—C19 −173.9 (3)
C2—C7—C8—C13 15.1 (3) C16—C15—C20—C21 −119.4 (3)
C6—C7—C8—C13 −101.1 (3) C14—C15—C20—C21 1.7 (3)
C3—C7—C8—C13 140.8 (3) C5—N4—C21—C20 85.3 (3)
C13—C8—C9—C10 −1.2 (4) C3—N4—C21—C20 −32.3 (4)
C7—C8—C9—C10 −173.5 (3) C19—C20—C21—N4 −139.5 (3)
C8—C9—C10—C11 1.8 (4) C15—C20—C21—N4 44.7 (4)
C9—C10—C11—C12 −0.7 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.87 (3) 2.31 (3) 2.785 (4) 115 (3)
N1—H1···O2 0.87 (3) 2.17 (3) 2.961 (4) 152 (3)
O2—H2···N4i 0.96 (5) 1.85 (5) 2.805 (4) 172 (5)

Symmetry code: (i) −x+1/2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5277).

References

  1. Lavrenova, G. V. & Lavrenov, V. K. (1997). Entsiklopedia lekarstvennykh rastenii, Vol. 1. Ukraine: Donnechina.
  2. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Tashkhodjaev, B., Turgunov, K. K., Yuldashev, P. Kh. & Mirzaeva, M. M. (2011). Chem. Nat. Compd. 47, 531–535.
  5. Yunusov, S. Yu. & Yuldashev, P. Kh. (1952). Dokl. Akad. Nauk Uzbekiskoi SSR, 12, 24–27.
  6. Yunusov, S. Yu. & Yuldashev, P. Kh. (1957). Zh. Obshch. Khim. 27, 2015–2018.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, GLOBAL. DOI: 10.1107/S1600536813015365/is5277sup1.cif

e-69-o1100-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015365/is5277Isup2.hkl

e-69-o1100-Isup2.hkl (155.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES