Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 19;69(Pt 7):o1114–o1115. doi: 10.1107/S1600536813016395

Benzamidinium 2-meth­oxy­benzoate

Gustavo Portalone a,*
PMCID: PMC3770387  PMID: 24046672

Abstract

The title mol­ecular salt, C7H9N2 +.C8H7O3 , was synthesized by reaction between benzamidine (benzene­carboximidamide) and 2-meth­oxy­benzoic acid. In the cation, the amidinium group has two similar C—N bonds [1.3070 (17) and 1.3145 (16) Å] and is almost coplanar with the benzene ring, making a dihedral angle of 5.34 (12)°. In the anion, the meth­oxy substituent forces the carboxyl­ate group to be twisted by 69.45 (6)° with respect to the plane of the aromatic fragment. In the crystal, the components are connected by two N+—H⋯O (±)CAHB (charge-assisted hydrogen bonds), forming centrosymmetric ionic dimers with graph-set motif R 2 2(8). These ionic dimers are then joined in ribbons running along the b-axis direction by another R 4 2(8) motif involving the remaining N+—H⋯O hydrogen bonds. Remarkably, at variance with the well known carb­oxy­lic dimer R 2 2(8) motif, the carboxyl­ate–amidinium pair is not planar, the dihedral angle between the planes defined by the CN2 + and CO2 atoms being 18.57 (12)°.

Related literature  

For the biological and pharmacological relevance of benzamidine, see: Powers & Harper (1999). For structural analysis of proton-transfer adducts containing mol­ecules of biological inter­est, see: Portalone (2010, 2013). For the supra­molecular association in proton-transfer adducts containing benzamidinium cations, see: Portalone (2010, 2012, 2013); Irrera & Portalone (2012, 2013); Irrera et al. (2012). For 2-meth­oxy­benzoic acid derivatives, see: Portalone (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-o1114-scheme1.jpg

Experimental  

Crystal data  

  • C7H9N2 +·C8H7O3

  • M r = 272.30

  • Triclinic, Inline graphic

  • a = 7.5154 (3) Å

  • b = 9.1393 (4) Å

  • c = 11.6498 (5) Å

  • α = 69.612 (3)°

  • β = 80.500 (5)°

  • γ = 72.482 (4)°

  • V = 713.63 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.12 × 0.09 × 0.05 mm

Data collection  

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.989, T max = 0.996

  • 20559 measured reflections

  • 4332 independent reflections

  • 3188 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.161

  • S = 1.05

  • 4332 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016395/nk2209sup1.cif

e-69-o1114-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016395/nk2209Isup2.hkl

e-69-o1114-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.913 (19) 1.87 (2) 2.7777 (16) 172.4 (17)
N1—H1B⋯O1i 0.87 (2) 1.97 (2) 2.7926 (15) 155.7 (17)
N2—H2A⋯O2 0.959 (19) 1.93 (2) 2.8863 (17) 175.4 (16)
N2—H2B⋯O2ii 0.86 (2) 2.00 (2) 2.8230 (16) 160.3 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The present study is a continuation of the work carried out in this Laboratory on proton-transfer adducts containing molecules of biological interest (Portalone, 2010, 2013), and deals with the single-crystal structure of the molecular salt, benzamidinium 2-methoxybenzoate, (I), obtained by a reaction between benzamidine (benzenecarboximidamide) and 2-methoxybenzoic acid in water solution. Benzamidine derivatives, which have shown strong biological and pharmacological activity (Powers & Harper, 1999), are being used in this Laboratory as bricks for supramolecular construction (Portalone, 2010). Indeed, these molecules are strong Lewis base and their cations can be easily anchored onto numerous inorganic and organic anions and polyanions, largely because of the presence of four potential donor sites for hydrogen-bonding.

The asymmetric unit of (I) comprises one planar benzamidinium cation and one 2-methoxybenzoate anion (Fig. 1).

In the cation the amidinium group forms a dihedral angle of 5.34 (12)° with the mean plane of the phenyl ring, at variance with the values observed in protonated benzamidinium ions (23.2 - 31.1°, Portalone, 2010; Portalone, 2013; Irrera et al., 2012; Irrera & Portalone, 2012, 2013). The pattern of bond lengths and bond angles of the benzamidinium cation agrees with that reported in previous structural investigations. In particular the amidinium group, true to one's expectations, features similar C—N bonds [1.3070 (17) and 1.3145 (16) Å], evidencing the delocalization of the π electrons and double-bond character.

In the 2-methoxybenzoate anion the benzene ring is essentially planar and the methoxy substituent forces the carboxylate group to be twisted with respect to the plane of the aromatic fragment by 69.45 (6)°. In the anion bond lengths and bond angles of the benzene ring are in accord with corresponding values obtained for both the orthorhombic and tetragonal forms of 2,6-dimethoxybenzoic acid (Portalone, 2011 and reference therein) and 4-methoxybenzamidinium 2,6-dimethoxybenzoate (Portalone, 2012). The C—O distances of the carboxylate group, 1.2441 (16) and 1.2488 (15) Å, indicate the delocalization of the negative charge.

The molecular components of the molecular salt are connected by two N+—H···O- (±)CAHB hydrogen bonds to form ionic dimers with graph-set motif R22(8) (Bernstein et al., 1995). Furthermore, centrosymmetric ionic dimers are joined in ribbons running along the b axis by another R24(8) motif involving the remaining N+—H···O- hydrogen bonds (Fig. 2). Remarkably, at variance with the well known carboxylic dimer R22 (8) motif, the carboxylate-amidinium pair is not planar, as the dihedral angle for the planes defined by the CN2+ and CO2- atoms is equal to 18.57 (12)°.

Experimental

Equimolar amounts (0.1 mmol) of benzamidine (Fluka at 96% purity) and 2-methoxybenzoic acid (Aldrich at 99% purity) were dissolved without further purification in 6 ml of hot water and heated under reflux for 6 h. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after two weeks.

Refinement

All H atoms were identified in difference Fourier maps, but for refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.97 Å (phenyl) and 1.01 Å (methyl), and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C, phenyl). and to 1.5Ueq(C, methyl). The hydrogen atoms of the methyl group were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density [HFIX 138 in the SHELX program suite (Sheldrick, 2008)]. Positional and thermal parameters of H atoms of the amidinium group were freely refined, giving N—H distances in the range 0.86 (2) - 0.96 (2) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level. The asymmetric unit was selected so that the two ions are linked by N—H+···O- hydrogen bonds. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing diagram for (I), viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.

Crystal data

C7H9N2+·C8H7O3 Z = 2
Mr = 272.30 F(000) = 288
Triclinic, P1 Dx = 1.267 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 7.5154 (3) Å Cell parameters from 9004 reflections
b = 9.1393 (4) Å θ = 3.2–32.5°
c = 11.6498 (5) Å µ = 0.09 mm1
α = 69.612 (3)° T = 298 K
β = 80.500 (5)° Tablets, colourless
γ = 72.482 (4)° 0.12 × 0.09 × 0.05 mm
V = 713.63 (6) Å3

Data collection

Agilent Xcalibur Sapphire3 diffractometer 4332 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3188 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0696 pixels mm-1 θmax = 30.5°, θmin = 3.2°
ω and φ scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→13
Tmin = 0.989, Tmax = 0.996 l = −16→16
20559 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.1295P] where P = (Fo2 + 2Fc2)/3
4332 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.44074 (18) 0.33628 (15) 0.94036 (13) 0.0426 (3)
H1A −0.369 (3) 0.355 (2) 0.9866 (17) 0.052 (5)*
H1B −0.550 (3) 0.403 (2) 0.9196 (17) 0.053 (5)*
N2 −0.21153 (17) 0.11282 (17) 0.93377 (13) 0.0464 (3)
H2A −0.139 (3) 0.138 (2) 0.9810 (17) 0.055 (5)*
H2B −0.167 (3) 0.022 (3) 0.9197 (18) 0.059 (5)*
C1 −0.50196 (17) 0.16439 (15) 0.84181 (11) 0.0319 (3)
C2 −0.6776 (2) 0.2674 (2) 0.81080 (18) 0.0531 (4)
H2 −0.7178 0.3693 0.8281 0.064*
C3 −0.7954 (2) 0.2254 (2) 0.75542 (18) 0.0602 (5)
H3 −0.9172 0.2986 0.7333 0.072*
C4 −0.7414 (2) 0.0816 (2) 0.73164 (15) 0.0508 (4)
H4 −0.8254 0.0522 0.6939 0.061*
C5 −0.5678 (2) −0.0216 (2) 0.76121 (16) 0.0504 (4)
H5 −0.5291 −0.1233 0.7435 0.060*
C6 −0.4480 (2) 0.01930 (18) 0.81621 (14) 0.0418 (3)
H6 −0.3257 −0.0539 0.8369 0.050*
C7 −0.38026 (17) 0.20627 (15) 0.90698 (12) 0.0323 (3)
O1 −0.24816 (15) 0.39582 (13) 1.09618 (11) 0.0513 (3)
O2 −0.00870 (15) 0.18920 (14) 1.08560 (11) 0.0536 (3)
O3 −0.24579 (19) 0.2238 (2) 1.37136 (12) 0.0694 (4)
C8 −0.00944 (18) 0.31556 (15) 1.23202 (12) 0.0335 (3)
C9 −0.0897 (2) 0.2793 (2) 1.35187 (14) 0.0434 (3)
C10 −0.0097 (3) 0.2988 (2) 1.44339 (15) 0.0572 (4)
H10 −0.0654 0.2737 1.5268 0.069*
C11 0.1493 (3) 0.3540 (2) 1.41503 (17) 0.0578 (5)
H11 0.2044 0.3678 1.4790 0.069*
C12 0.2300 (3) 0.3895 (2) 1.29805 (18) 0.0567 (4)
H12 0.3417 0.4281 1.2788 0.068*
C13 0.1494 (2) 0.3694 (2) 1.20632 (14) 0.0466 (4)
H13 0.2066 0.3940 1.1233 0.056*
C14 −0.09582 (18) 0.29772 (15) 1.13074 (12) 0.0335 (3)
C15 −0.3237 (4) 0.1697 (4) 1.4934 (2) 0.0938 (8)
H15A −0.2241 (19) 0.083 (2) 1.5466 (11) 0.141*
H15B −0.430 (3) 0.123 (2) 1.4938 (3) 0.141*
H15C −0.372 (3) 0.2639 (17) 1.5268 (9) 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0387 (6) 0.0361 (6) 0.0566 (8) 0.0057 (5) −0.0185 (5) −0.0255 (6)
N2 0.0370 (6) 0.0443 (7) 0.0641 (8) 0.0087 (5) −0.0192 (6) −0.0341 (7)
C1 0.0328 (6) 0.0316 (6) 0.0304 (6) −0.0023 (5) −0.0065 (5) −0.0122 (5)
C2 0.0485 (8) 0.0434 (8) 0.0714 (11) 0.0097 (7) −0.0279 (8) −0.0309 (8)
C3 0.0469 (9) 0.0595 (10) 0.0779 (12) 0.0077 (8) −0.0332 (8) −0.0317 (9)
C4 0.0538 (9) 0.0555 (9) 0.0506 (9) −0.0146 (7) −0.0188 (7) −0.0189 (7)
C5 0.0590 (9) 0.0429 (8) 0.0573 (9) −0.0076 (7) −0.0158 (7) −0.0253 (7)
C6 0.0410 (7) 0.0373 (7) 0.0483 (8) 0.0006 (6) −0.0120 (6) −0.0202 (6)
C7 0.0325 (6) 0.0305 (6) 0.0331 (6) −0.0015 (5) −0.0057 (5) −0.0133 (5)
O1 0.0498 (6) 0.0453 (6) 0.0616 (7) 0.0158 (5) −0.0293 (5) −0.0328 (5)
O2 0.0462 (6) 0.0537 (7) 0.0690 (7) 0.0137 (5) −0.0211 (5) −0.0442 (6)
O3 0.0628 (8) 0.1107 (12) 0.0494 (7) −0.0439 (8) 0.0064 (6) −0.0300 (7)
C8 0.0341 (6) 0.0297 (6) 0.0363 (6) 0.0028 (5) −0.0105 (5) −0.0156 (5)
C9 0.0415 (7) 0.0506 (8) 0.0409 (7) −0.0066 (6) −0.0066 (6) −0.0208 (6)
C10 0.0624 (10) 0.0752 (12) 0.0384 (8) −0.0115 (9) −0.0104 (7) −0.0258 (8)
C11 0.0645 (11) 0.0638 (11) 0.0548 (10) −0.0087 (9) −0.0253 (8) −0.0279 (8)
C12 0.0536 (9) 0.0614 (10) 0.0652 (11) −0.0192 (8) −0.0166 (8) −0.0232 (9)
C13 0.0472 (8) 0.0541 (9) 0.0420 (8) −0.0150 (7) −0.0045 (6) −0.0175 (7)
C14 0.0344 (6) 0.0301 (6) 0.0366 (6) −0.0001 (5) −0.0088 (5) −0.0156 (5)
C15 0.0826 (16) 0.144 (2) 0.0608 (13) −0.0546 (17) 0.0201 (12) −0.0299 (14)

Geometric parameters (Å, º)

N1—C7 1.3070 (17) O1—C14 1.2488 (15)
N1—H1A 0.913 (19) O2—C14 1.2441 (16)
N1—H1B 0.87 (2) O3—C9 1.369 (2)
N2—C7 1.3145 (16) O3—C15 1.421 (3)
N2—H2A 0.959 (19) C8—C13 1.375 (2)
N2—H2B 0.86 (2) C8—C9 1.394 (2)
C1—C6 1.3869 (19) C8—C14 1.5135 (17)
C1—C2 1.3898 (19) C9—C10 1.393 (2)
C1—C7 1.4838 (18) C10—C11 1.381 (3)
C2—C3 1.383 (2) C10—H10 0.9700
C2—H2 0.9700 C11—C12 1.367 (3)
C3—C4 1.366 (2) C11—H11 0.9700
C3—H3 0.9700 C12—C13 1.399 (2)
C4—C5 1.375 (2) C12—H12 0.9700
C4—H4 0.9700 C13—H13 0.9700
C5—C6 1.386 (2) C15—H15A 1.0120
C5—H5 0.9700 C15—H15B 1.0120
C6—H6 0.9700 C15—H15C 1.0120
C7—N1—H1A 119.2 (12) C13—C8—C9 119.07 (13)
C7—N1—H1B 120.3 (12) C13—C8—C14 120.07 (12)
H1A—N1—H1B 120.5 (17) C9—C8—C14 120.86 (12)
C7—N2—H2A 119.6 (11) O3—C9—C10 124.03 (15)
C7—N2—H2B 123.2 (13) O3—C9—C8 115.99 (13)
H2A—N2—H2B 116.7 (17) C10—C9—C8 119.97 (15)
C6—C1—C2 118.65 (13) C11—C10—C9 119.83 (16)
C6—C1—C7 121.19 (11) C11—C10—H10 120.1
C2—C1—C7 120.08 (12) C9—C10—H10 120.1
C3—C2—C1 120.39 (14) C12—C11—C10 120.83 (15)
C3—C2—H2 119.8 C12—C11—H11 119.6
C1—C2—H2 119.8 C10—C11—H11 119.6
C4—C3—C2 120.44 (15) C11—C12—C13 119.22 (16)
C4—C3—H3 119.8 C11—C12—H12 120.4
C2—C3—H3 119.8 C13—C12—H12 120.4
C3—C4—C5 119.99 (14) C8—C13—C12 121.07 (15)
C3—C4—H4 120.0 C8—C13—H13 119.5
C5—C4—H4 120.0 C12—C13—H13 119.5
C4—C5—C6 120.16 (15) O2—C14—O1 124.40 (12)
C4—C5—H5 119.9 O2—C14—C8 118.04 (11)
C6—C5—H5 119.9 O1—C14—C8 117.53 (11)
C5—C6—C1 120.36 (13) O3—C15—H15A 109.5
C5—C6—H6 119.8 O3—C15—H15B 109.5
C1—C6—H6 119.8 H15A—C15—H15B 109.5
N1—C7—N2 118.81 (13) O3—C15—H15C 109.5
N1—C7—C1 120.25 (11) H15A—C15—H15C 109.5
N2—C7—C1 120.93 (12) H15B—C15—H15C 109.5
C9—O3—C15 118.79 (15)
C6—C1—C2—C3 −0.1 (3) C14—C8—C9—O3 1.6 (2)
C7—C1—C2—C3 −176.85 (16) C13—C8—C9—C10 0.4 (2)
C1—C2—C3—C4 0.7 (3) C14—C8—C9—C10 −179.03 (14)
C2—C3—C4—C5 −0.9 (3) O3—C9—C10—C11 179.31 (17)
C3—C4—C5—C6 0.6 (3) C8—C9—C10—C11 −0.1 (3)
C4—C5—C6—C1 0.0 (3) C9—C10—C11—C12 −0.2 (3)
C2—C1—C6—C5 −0.2 (2) C10—C11—C12—C13 0.1 (3)
C7—C1—C6—C5 176.50 (14) C9—C8—C13—C12 −0.6 (2)
C6—C1—C7—N1 −173.63 (14) C14—C8—C13—C12 178.91 (14)
C2—C1—C7—N1 3.1 (2) C11—C12—C13—C8 0.3 (3)
C6—C1—C7—N2 5.4 (2) C13—C8—C14—O2 68.85 (18)
C2—C1—C7—N2 −177.93 (15) C9—C8—C14—O2 −111.69 (16)
C15—O3—C9—C10 −5.5 (3) C13—C8—C14—O1 −109.51 (16)
C15—O3—C9—C8 173.93 (19) C9—C8—C14—O1 69.95 (18)
C13—C8—C9—O3 −178.98 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.913 (19) 1.87 (2) 2.7777 (16) 172.4 (17)
N1—H1B···O1i 0.87 (2) 1.97 (2) 2.7926 (15) 155.7 (17)
N2—H2A···O2 0.959 (19) 1.93 (2) 2.8863 (17) 175.4 (16)
N2—H2B···O2ii 0.86 (2) 2.00 (2) 2.8230 (16) 160.3 (18)

Symmetry codes: (i) −x−1, −y+1, −z+2; (ii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2209).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Ltd, Abingdon, England.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Irrera, S., Ortaggi, G. & Portalone, G. (2012). Acta Cryst. C68, o447–o451. [DOI] [PubMed]
  6. Irrera, S. & Portalone, G. (2012). Acta Cryst. E68, o3083. [DOI] [PMC free article] [PubMed]
  7. Irrera, S. & Portalone, G. (2013). Acta Cryst. E69, o56. [DOI] [PMC free article] [PubMed]
  8. Portalone, G. (2010). Acta Cryst. C66, o295–o301. [DOI] [PubMed]
  9. Portalone, G. (2011). Acta Cryst. E67, o3394–o3395. [DOI] [PMC free article] [PubMed]
  10. Portalone, G. (2012). Acta Cryst. E68, o268–o269. [DOI] [PMC free article] [PubMed]
  11. Portalone, G. (2013). Acta Cryst. E69, o14–o15. [DOI] [PMC free article] [PubMed]
  12. Powers, J. C. & Harper, J. W. (1999). Proteinase inhibitors, edited by A. J. Barrett & G. Salvesen, pp. 55–152. Amsterdam: Elsevier.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016395/nk2209sup1.cif

e-69-o1114-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016395/nk2209Isup2.hkl

e-69-o1114-Isup2.hkl (208KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES