Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 19;69(Pt 7):o1118–o1119. doi: 10.1107/S1600536813016322

2-Amino-5-methyl­pyridinium 3-hy­droxy­pyridine-2-carboxyl­ate

Abbas Farhadikoutenaei a,b, Kaliyaperumal Thanigaimani a, Suhana Arshad a, Ibrahim Abdul Razak a,*,
PMCID: PMC3770389  PMID: 24046674

Abstract

In the 3-hy­droxy­picolinate anion of the title salt, C6H9N2 +·C6H4NO3 , an intra­molecular O—H⋯O hydrogen bond with an S(6) graph-set motif is formed, so that the anion is essentially planar, with a dihedral angle of 9.55 (9)° between the pyridine ring and the carboxyl­ate group. In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R 2 2(8) and R 4 2(8) ring motifs. The crystal structure also features N—H⋯N and weak C—H⋯π inter­actions.

Related literature  

For details of non-covalent inter­actions, see: Desiraju (2007); Aakeroy & Seddon (1993). For related structures, see: Nahringbauer & Kvick (1977); Robert et al. (2001); Thanigaimani et al. (2010, 2013). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-69-o1118-scheme1.jpg

Experimental  

Crystal data  

  • C6H9N2 +·C6H4NO3

  • M r = 247.25

  • Monoclinic, Inline graphic

  • a = 7.3443 (4) Å

  • b = 16.4321 (9) Å

  • c = 10.8235 (5) Å

  • β = 118.250 (3)°

  • V = 1150.62 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.58 × 0.29 × 0.16 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.942, T max = 0.984

  • 15996 measured reflections

  • 4132 independent reflections

  • 3596 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.115

  • S = 1.04

  • 4132 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016322/is5281sup1.cif

e-69-o1118-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016322/is5281Isup2.hkl

e-69-o1118-Isup2.hkl (202.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016322/is5281Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.93 (2) 1.66 (2) 2.5239 (10) 152 (2)
N3—H2N3⋯O3i 0.885 (15) 1.969 (15) 2.8504 (11) 174.0 (14)
N3—H1N3⋯O3ii 0.859 (14) 2.248 (15) 2.8093 (10) 123.0 (12)
N3—H1N3⋯N1ii 0.859 (14) 2.416 (14) 3.2481 (10) 163.2 (13)
N2—H1N2⋯O2i 0.943 (16) 1.796 (16) 2.7327 (10) 171.4 (13)
C9—H9ACg1 0.95 2.59 3.4702 (10) 154
C11—H11ACg1iii 0.95 2.71 3.3956 (8) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant, No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for the TWAS–USM fellowship.

supplementary crystallographic information

Comment

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, π–π stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeroy & Seddon, 1993). In order to study potential hydrogen bonding interactions, the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 3-hydroxypicolinate anion. An intramolecular O1—H1O1···O2 hydrogen bond in the 3-hydroxypicolinate anion generates an S(6) ring motif. (Bernstein et al., 1995). This motif is also observed in the crystal structure of acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010). The proton transfers from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C7—N2—C11 angle of the pyridinium ring to 122.89 (7)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.011 (1) Å for atom C9. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N2 atom and a nitrogen atom of the 2-amino group (N3) are hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of intramolecular N2—H1N2···O2i and N3—H2N3···O3i hydrogen bonds (symmetry code in Table 1), forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are linked by N3—H1N3···O3ii hydrogen bonds (symmetry code in Table 1), forming a ring spanning the centre of symmetry at (1, -3/2, 1/2) to produce a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of four hydrogen bonds. This set of fused rings can be represented by the graph-set notations R22(8), R42(8) and R22(8) arrangement. This type of motif has been reported in the crystal structures of trimethoprim hydrogen glutarate (Robert et al., 2001), acetoguanaminium 3-hydroxypicolinate monohydrate (Thanigaimani et al., 2010) and 2-amino-6-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2013). The 2-aminogroup at N3 forms a bifurcated hydrogen bond (Table 1) with carboxyl atom O3ii and atom N1ii of a 3-hydroxypicolinate anion [graph-set R12(5)]. The crystal structure is further stabilized by weak C—H···π interactions (Table 1) involving the N1/C1–C5 (centroid Cg1) ring.

Experimental

Hot methanol solutions (20 ml) of 2-amino5-methylpyridine (54 mg, Aldrich) and 3-hydoxypicolinic acid (34 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement

O- and N-bound H atoms were located in a difference Fourier map and were refined freely [O—H = 0.926 (19) Å and N—H = 0.859 (14)–0.927 (15) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. Five outliers were omitted (2 4 1, 2 1 5, 1 0 2, 3 3 4 and 1 6 0) in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C6H9N2+·C6H4NO3 F(000) = 520
Mr = 247.25 Dx = 1.427 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8234 reflections
a = 7.3443 (4) Å θ = 2.5–32.6°
b = 16.4321 (9) Å µ = 0.11 mm1
c = 10.8235 (5) Å T = 100 K
β = 118.250 (3)° Block, colourless
V = 1150.62 (10) Å3 0.58 × 0.29 × 0.16 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4132 independent reflections
Radiation source: fine-focus sealed tube 3596 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→9
Tmin = 0.942, Tmax = 0.984 k = −24→24
15996 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2463P] where P = (Fo2 + 2Fc2)/3
4132 reflections (Δ/σ)max = 0.001
180 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.38403 (10) 0.83927 (4) 0.52572 (6) 0.02228 (14)
O2 0.41088 (9) 0.89008 (4) 0.31488 (7) 0.01954 (13)
O3 0.12614 (10) 0.90599 (4) 0.10825 (6) 0.01974 (13)
N1 −0.10602 (10) 0.82189 (4) 0.20289 (7) 0.01502 (13)
C1 −0.22027 (12) 0.78730 (5) 0.25475 (8) 0.01684 (14)
H1A −0.3598 0.7738 0.1920 0.020*
C2 −0.14303 (13) 0.77021 (4) 0.39745 (8) 0.01669 (14)
H2A −0.2297 0.7465 0.4307 0.020*
C3 0.06046 (13) 0.78818 (4) 0.48931 (8) 0.01635 (14)
H3A 0.1159 0.7773 0.5867 0.020*
C4 0.18388 (12) 0.82274 (4) 0.43669 (8) 0.01437 (14)
C5 0.09352 (11) 0.83951 (4) 0.29191 (7) 0.01291 (13)
C6 0.21674 (12) 0.88142 (4) 0.23125 (8) 0.01460 (14)
N2 0.39598 (10) 0.50115 (4) 0.27137 (7) 0.01444 (13)
N3 0.70889 (12) 0.55236 (5) 0.44004 (8) 0.02005 (14)
C7 0.50370 (12) 0.55708 (4) 0.37131 (8) 0.01518 (14)
C8 0.38865 (14) 0.61797 (5) 0.39723 (8) 0.01833 (15)
H8A 0.4581 0.6590 0.4655 0.022*
C9 0.17762 (14) 0.61731 (5) 0.32352 (9) 0.01811 (15)
H9A 0.1020 0.6576 0.3431 0.022*
C10 0.06826 (12) 0.55828 (4) 0.21858 (8) 0.01489 (14)
C11 0.18508 (12) 0.50126 (4) 0.19649 (8) 0.01427 (14)
H11A 0.1179 0.4606 0.1272 0.017*
C12 −0.16380 (13) 0.56034 (5) 0.13631 (9) 0.01984 (16)
H12A −0.2134 0.5109 0.0793 0.030*
H12B −0.2072 0.6082 0.0750 0.030*
H12C −0.2220 0.5633 0.2011 0.030*
H2N3 0.766 (2) 0.5071 (9) 0.4311 (15) 0.030 (3)*
H1N3 0.779 (2) 0.5866 (8) 0.5053 (15) 0.029 (3)*
H1O1 0.437 (3) 0.8585 (12) 0.469 (2) 0.058 (5)*
H1N2 0.465 (2) 0.4611 (9) 0.2494 (15) 0.036 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0138 (3) 0.0296 (3) 0.0167 (3) −0.0022 (2) 0.0017 (2) 0.0055 (2)
O2 0.0115 (3) 0.0238 (3) 0.0219 (3) −0.0005 (2) 0.0067 (2) 0.0054 (2)
O3 0.0173 (3) 0.0264 (3) 0.0151 (3) −0.0030 (2) 0.0073 (2) 0.0024 (2)
N1 0.0137 (3) 0.0162 (3) 0.0150 (3) −0.0018 (2) 0.0067 (2) −0.0012 (2)
C1 0.0144 (3) 0.0181 (3) 0.0183 (3) −0.0032 (2) 0.0080 (3) −0.0014 (2)
C2 0.0187 (3) 0.0156 (3) 0.0190 (3) −0.0011 (3) 0.0116 (3) 0.0000 (2)
C3 0.0202 (4) 0.0150 (3) 0.0148 (3) 0.0006 (2) 0.0090 (3) 0.0010 (2)
C4 0.0136 (3) 0.0139 (3) 0.0139 (3) 0.0007 (2) 0.0050 (3) 0.0007 (2)
C5 0.0123 (3) 0.0130 (3) 0.0136 (3) 0.0005 (2) 0.0063 (3) 0.0003 (2)
C6 0.0135 (3) 0.0148 (3) 0.0165 (3) −0.0001 (2) 0.0079 (3) −0.0001 (2)
N2 0.0137 (3) 0.0146 (3) 0.0148 (3) 0.0010 (2) 0.0066 (2) −0.0013 (2)
N3 0.0148 (3) 0.0217 (3) 0.0187 (3) −0.0003 (2) 0.0039 (3) −0.0020 (2)
C7 0.0162 (3) 0.0151 (3) 0.0130 (3) −0.0005 (2) 0.0058 (3) 0.0006 (2)
C8 0.0217 (4) 0.0153 (3) 0.0162 (3) 0.0011 (3) 0.0076 (3) −0.0024 (2)
C9 0.0216 (4) 0.0155 (3) 0.0185 (3) 0.0044 (3) 0.0105 (3) 0.0004 (2)
C10 0.0154 (3) 0.0150 (3) 0.0153 (3) 0.0023 (2) 0.0082 (3) 0.0028 (2)
C11 0.0141 (3) 0.0147 (3) 0.0141 (3) −0.0003 (2) 0.0067 (3) −0.0001 (2)
C12 0.0152 (3) 0.0223 (3) 0.0230 (4) 0.0034 (3) 0.0098 (3) 0.0051 (3)

Geometric parameters (Å, º)

O1—C4 1.3499 (9) N2—H1N2 0.927 (15)
O1—H1O1 0.926 (19) N3—C7 1.3301 (10)
O2—C6 1.2848 (9) N3—H2N3 0.883 (15)
O3—C6 1.2408 (9) N3—H1N3 0.859 (14)
N1—C1 1.3372 (10) C7—C8 1.4207 (11)
N1—C5 1.3502 (10) C8—C9 1.3668 (12)
C1—C2 1.3989 (11) C8—H8A 0.9500
C1—H1A 0.9500 C9—C10 1.4187 (11)
C2—C3 1.3793 (11) C9—H9A 0.9500
C2—H2A 0.9500 C10—C11 1.3657 (10)
C3—C4 1.3990 (11) C10—C12 1.5040 (11)
C3—H3A 0.9500 C11—H11A 0.9500
C4—C5 1.4098 (10) C12—H12A 0.9800
C5—C6 1.5122 (10) C12—H12B 0.9800
N2—C7 1.3529 (10) C12—H12C 0.9800
N2—C11 1.3666 (10)
C4—O1—H1O1 104.5 (12) C7—N3—H1N3 120.3 (10)
C1—N1—C5 118.45 (6) H2N3—N3—H1N3 120.5 (13)
N1—C1—C2 122.80 (7) N3—C7—N2 119.11 (7)
N1—C1—H1A 118.6 N3—C7—C8 123.57 (7)
C2—C1—H1A 118.6 N2—C7—C8 117.32 (7)
C3—C2—C1 119.19 (7) C9—C8—C7 119.69 (7)
C3—C2—H2A 120.4 C9—C8—H8A 120.2
C1—C2—H2A 120.4 C7—C8—H8A 120.2
C2—C3—C4 118.90 (7) C8—C9—C10 121.91 (7)
C2—C3—H3A 120.6 C8—C9—H9A 119.0
C4—C3—H3A 120.6 C10—C9—H9A 119.0
O1—C4—C3 119.18 (7) C11—C10—C9 116.40 (7)
O1—C4—C5 122.33 (7) C11—C10—C12 122.79 (7)
C3—C4—C5 118.49 (7) C9—C10—C12 120.80 (7)
N1—C5—C4 122.15 (7) C10—C11—N2 121.78 (7)
N1—C5—C6 117.28 (6) C10—C11—H11A 119.1
C4—C5—C6 120.53 (7) N2—C11—H11A 119.1
O3—C6—O2 124.93 (7) C10—C12—H12A 109.5
O3—C6—C5 119.13 (7) C10—C12—H12B 109.5
O2—C6—C5 115.92 (6) H12A—C12—H12B 109.5
C7—N2—C11 122.89 (6) C10—C12—H12C 109.5
C7—N2—H1N2 120.2 (9) H12A—C12—H12C 109.5
C11—N2—H1N2 116.9 (9) H12B—C12—H12C 109.5
C7—N3—H2N3 117.5 (9)
C5—N1—C1—C2 1.36 (11) N1—C5—C6—O2 −173.26 (6)
N1—C1—C2—C3 −1.19 (12) C4—C5—C6—O2 9.01 (10)
C1—C2—C3—C4 −0.26 (11) C11—N2—C7—N3 179.59 (7)
C2—C3—C4—O1 −178.95 (7) C11—N2—C7—C8 −0.11 (11)
C2—C3—C4—C5 1.41 (11) N3—C7—C8—C9 −178.71 (7)
C1—N1—C5—C4 −0.11 (11) N2—C7—C8—C9 0.97 (11)
C1—N1—C5—C6 −177.80 (6) C7—C8—C9—C10 −1.42 (12)
O1—C4—C5—N1 179.10 (7) C8—C9—C10—C11 0.95 (11)
C3—C4—C5—N1 −1.28 (11) C8—C9—C10—C12 −178.32 (7)
O1—C4—C5—C6 −3.29 (11) C9—C10—C11—N2 −0.06 (11)
C3—C4—C5—C6 176.34 (6) C12—C10—C11—N2 179.19 (6)
N1—C5—C6—O3 8.08 (10) C7—N2—C11—C10 −0.35 (11)
C4—C5—C6—O3 −169.65 (7)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2 0.93 (2) 1.66 (2) 2.5239 (10) 152 (2)
N3—H2N3···O3i 0.885 (15) 1.969 (15) 2.8504 (11) 174.0 (14)
N3—H1N3···O3ii 0.859 (14) 2.248 (15) 2.8093 (10) 123.0 (12)
N3—H1N3···N1ii 0.859 (14) 2.416 (14) 3.2481 (10) 163.2 (13)
N2—H1N2···O2i 0.943 (16) 1.796 (16) 2.7327 (10) 171.4 (13)
C9—H9A···Cg1 0.95 2.59 3.4702 (10) 154
C11—H11A···Cg1iii 0.95 2.71 3.3956 (8) 130

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5281).

References

  1. Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. [DOI] [PubMed]
  7. Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  8. Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328. [DOI] [PubMed]
  12. Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013). Acta Cryst. E69, o318. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016322/is5281sup1.cif

e-69-o1118-sup1.cif (22.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016322/is5281Isup2.hkl

e-69-o1118-Isup2.hkl (202.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016322/is5281Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES