Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 19;69(Pt 7):o1122–o1123. doi: 10.1107/S1600536813016437

4-Carb­oxy­pyridin-1-ium 2,4,5-tri­carb­oxy­benzoate monohydrate

Hadi D Arman a, Edward R T Tiekink b,*
PMCID: PMC3770392  PMID: 24046677

Abstract

The title hydrated salt, C6H6NO2 +·C10H5O8 ·H2O, was isolated from the 1:1 cocrystallization of benzene-1,2,4,5-tetra­carb­oxy­lic acid and isonicotinic acid in ethanol solution. In the crystal, the cation is close to planar [r.m.s. deviation = 0.085 Å for the nine fitted atoms; the C—C—C—O(carbon­yl) torsion angle = −8.7 (4)°], but twists are evident in the anion, with all but the carb­oxy­lic acid group diagonally opposite the carboxyl­ate group being significantly twisted out of the plane of the benzene ring [C—C—C—O(carbon­yl) torsion angles = −118.1 (2), −157.6 (2), 4.3 (3) and 77.3 (3)°]. In the crystal, the ions and water mol­ecules are consolidated into a three-dimensional architecture by O—H⋯O and N—H⋯O hydrogen bonding along with C—H⋯O inter­actions.

Related literature  

For background to pharmaceutical co-crystals, see: Almarsson & Zaworotko (2004). For related co-crystallization studies on 1,2,4,5-benzene­tetra­carb­oxy­lic acid, see: Arman & Tiekink (2013a ,b ). For the structure of isonicotinic acid, see: Takusagawa & Shimada (1976). For the structure of the analogous salt formed from nicotinic acid, see: Dos Santos et al. (2012). For the calculation of pK a values, see: Chemaxon (2009).graphic file with name e-69-o1122-scheme1.jpg

Experimental  

Crystal data  

  • C6H6NO2 +·C10H5O8 ·H2O

  • M r = 395.27

  • Triclinic, Inline graphic

  • a = 9.724 (2) Å

  • b = 10.007 (2) Å

  • c = 10.755 (2) Å

  • α = 99.56 (1)°

  • β = 114.667 (8)°

  • γ = 110.283 (9)°

  • V = 830.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 98 K

  • 0.33 × 0.25 × 0.20 mm

Data collection  

  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.807, T max = 1.000

  • 5233 measured reflections

  • 3414 independent reflections

  • 3200 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.133

  • S = 1.17

  • 3414 reflections

  • 281 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016437/hb7093sup1.cif

e-69-o1122-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016437/hb7093Isup2.hkl

e-69-o1122-Isup2.hkl (164KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016437/hb7093Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3i 0.84 (3) 1.82 (3) 2.654 (3) 176 (3)
O6—H6O⋯O1ii 0.85 (5) 1.69 (5) 2.534 (3) 174 (5)
O8—H8O⋯O1W 0.85 (5) 1.79 (5) 2.634 (3) 171 (6)
O10—H10O⋯O2iii 0.85 (4) 1.78 (4) 2.625 (3) 172 (4)
N1—H1N⋯O5iv 0.89 (4) 1.86 (4) 2.711 (3) 160 (4)
O1W—H1W⋯O2v 0.85 (2) 2.16 (2) 2.957 (3) 156 (3)
O1W—H2W⋯O2iii 0.85 (1) 2.05 (2) 2.853 (3) 158 (4)
C6—H6⋯O7v 0.95 2.40 3.267 (3) 151
C12—H12⋯O9vi 0.95 2.35 3.179 (4) 146
C14—H14⋯O6vii 0.95 2.40 3.300 (4) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

supplementary crystallographic information

Comment

Interest in co-crystallization experiments stems largely from potential applications in the pharmaceutical industry (Almarsson & Zaworotko, 2004). The title salt hydrate, (I), was isolated during an investigation of co-crystallization experiments with 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid; LH4) and various pyridyl derivatives (Arman & Tiekink, 2013a; Arman & Tiekink, 2013b).

The 1:1 co-crystallization of pyromellitic acid and isonicotinic acid in an ethanol solution afforded a salt hydrate, (I), there being one complete molecule of the 4-carboxypyridin-1-ium cation, the hydroxy(2,4,5-tricarboxyphenyl)methanolate anion and a water molecule in the asymmetric unit. Confirmation of protonation of isonicotinic acid during crystallization is found in the nature of hydrogen bonding involving the pyridinium cation (see below), and the widening of the C13—N1—C14 angle to 123.1 (2)° cf. 118.9 (2)° in the structure of isonicotinic acid itself (Takusagawa & Shimada, 1976). Further, the disparity in the C—O bond lengths of the carboxylic acid residue, Δ(C—O) = [(C—O)long - (C—O)short] = 0.10 Å, confirms that isonicotinic acid has been protonated at N1, rather than existing in a zwitterionic form, with equivalent C—O bonds. Complementing this evidence, in the anion, the Δ(C—O) value for the O1-carboxylate group is 0.01 Å, indicating considerable delocalization of electron density over the CO2 atoms, compared to values in the range 0.07 to 0.11 Å for the remaining carboxylic acids.

In the cation, the carboxylic acid residue is approximately co-planar with the pyridyl ring to which it is attached as seen in the C12—C11—C16—O9 torsion angle of -8.7 (4)°. Indeed, the entire cation is approximately planar with the r.m.s. deviation = 0.085 Å for the nine fitted atoms. By contrast, anion is non-planar with the carboxylic acid diagonally opposite the carboxylate group being co-planar to the phenyl ring [CCCO(carbonyl) torsion angle = 4.3 (3)°] but the remaining carboxylic acids and carboxylate residues deviate significantly [CCCO(carbonyl) torsion angles =-118.1 (2), -157.6 (2) and 77.3 (3)°].

The three-dimensional crystal structure of (I) is consolidated by O—H···O and N—H···O hydrogen bonding involving all three components of the structure; geometric parameters characterizing these are summarized in Table 1. Two distinct supramolecular aggregation patterns are clearly discerned, with the first of these being a tape along [1 0 0] comprising hydroxy(2,4,5-tricarboxyphenyl)methanolate anions, Fig. 2, which is sustained by centrosymmetric eight-membered {···O=COH}2 synthons involving the O3-carboxylic acid and orthogonal O6—H···O1 hydrogen bonds. A supramolecular chain containing alternating cations and anions is also found, Fig. 3. This is aligned along [1 0 - 1] and is stabilized by O10—H···O2 and N1—H···O5 hydrogen bonds. The aforementioned are connected into a supramolecular layer in the ac plane. As seen in Fig. 4, the centrosymmetrically related water molecules are bridged by carboxylate-O2 atoms to form an eight-membered {···HOH···O}2 ring. The water-O1w atom also accepts a hydrogen bond from the O8—H hydroxyl group. Also evident from the image in Fig. 4 is the critical role played by the trifurcated carboxylate-O2 atom in stabilizing the crystal structure. Several of the oxygen atoms not involved in formal hydrogen bonding interactions participate in C—H···O interactions to consolidate the crystal packing, Fig. 5.

While salt (I) was characterized from the 1:1 co-crystallization of LH4 with isonicoinic acid in an ethanol solution, the analogous experiment with nicotinic [NA] acid gave a salt of composition [NAH]2[LH2] (Dos Santos, et al., 2012). While protonation of NA is not surprising the fact that LH4 has been doubly deprotonated correlates nicely with the increased basicity of the nitrogen atom in NA cf. isonicotinic acid, i.e. calculated pKa = 4.19 and 2.35, respectively (Chemaxon, 2009).

Experimental

Crystals of the title salt hydrate were harvested from an ethanol (10 ml) solution containing a 1:1 molar ratio of pyromellitic acid (Sigma-Aldrich; 6 mg) and isonicoinic acid (Sigma-Aldrich; 3 mg).

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O—H and N—H atoms were located in difference maps and were refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.2Ueq(N), respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structures of (a) the 4-carboxypyridin-1-ium cation and (b) the hydroxy(2,4,5-tricarboxyphenyl)methanolate anion and water molecule (hydrogen bond shown as a dashed line) in (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Supramolecular tape mediated by O—H···O hydrogen bonding between anions. The O—H···O hydrogen bonds are shown as orange dashed lines.

Fig. 3.

Fig. 3.

Supramolecular chain mediated by N—H···O hydrogen bonding between cations and anions. The N—H···O hydrogen bonds are shown as blue dashed lines.

Fig. 4.

Fig. 4.

Detail of the hydrogen bonding involving the trifurcated carboxylate-O2 atom and water molecule of solvation.

Fig. 5.

Fig. 5.

Unit-cell contents in (I) viewed in projection down the c axis. The C—H···O interactions are shown as green dashed lines.

Crystal data

C6H6NO2+·C10H5O8·H2O Z = 2
Mr = 395.27 F(000) = 408
Triclinic, P1 Dx = 1.580 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.724 (2) Å Cell parameters from 3944 reflections
b = 10.007 (2) Å θ = 2.3–29.8°
c = 10.755 (2) Å µ = 0.14 mm1
α = 99.56 (1)° T = 98 K
β = 114.667 (8)° Block, colourless
γ = 110.283 (9)° 0.33 × 0.25 × 0.20 mm
V = 830.7 (3) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer 3414 independent reflections
Radiation source: fine-focus sealed tube 3200 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scans θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −11→12
Tmin = 0.807, Tmax = 1.000 k = −12→12
5233 measured reflections l = −13→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.2826P] where P = (Fo2 + 2Fc2)/3
3414 reflections (Δ/σ)max < 0.001
281 parameters Δρmax = 0.34 e Å3
8 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1555 (2) 0.6476 (2) 0.60109 (18) 0.0198 (4)
O2 0.3582 (2) 0.80549 (19) 0.83497 (17) 0.0192 (4)
O3 0.3881 (2) 0.53016 (19) 0.85274 (17) 0.0180 (4)
O4 0.6609 (2) 0.56930 (19) 0.94793 (17) 0.0164 (3)
H4O 0.642 (4) 0.534 (4) 1.008 (3) 0.037 (9)*
O5 0.8655 (2) 0.7742 (2) 0.5022 (2) 0.0235 (4)
O6 0.9197 (2) 0.6410 (2) 0.64907 (19) 0.0210 (4)
H6O 0.994 (4) 0.643 (5) 0.627 (5) 0.076 (15)*
O7 0.6828 (2) 0.98272 (19) 0.46806 (18) 0.0198 (4)
O8 0.5263 (2) 0.7429 (2) 0.29663 (18) 0.0219 (4)
H8O 0.542 (6) 0.788 (5) 0.240 (4) 0.077 (15)*
O9 0.1620 (3) 0.9309 (3) −0.0204 (3) 0.0409 (6)
O10 0.1966 (2) 0.7184 (2) −0.0264 (2) 0.0251 (4)
H10O 0.243 (4) 0.751 (4) −0.074 (3) 0.039 (9)*
O1W 0.6084 (2) 0.8838 (2) 0.1330 (2) 0.0251 (4)
H1W 0.645 (4) 0.9798 (13) 0.166 (3) 0.042 (10)*
H2W 0.549 (4) 0.849 (3) 0.0401 (11) 0.058 (12)*
N1 −0.0175 (3) 0.7469 (2) 0.3153 (2) 0.0187 (4)
H1N −0.054 (4) 0.736 (4) 0.378 (3) 0.037 (9)*
C1 0.4428 (3) 0.7087 (2) 0.6751 (2) 0.0129 (4)
C2 0.5480 (3) 0.6444 (2) 0.7461 (2) 0.0126 (4)
C3 0.6741 (3) 0.6448 (2) 0.7146 (2) 0.0127 (4)
H3 0.7450 0.6024 0.7630 0.015*
C4 0.6972 (3) 0.7066 (2) 0.6129 (2) 0.0123 (4)
C5 0.5920 (3) 0.7703 (2) 0.5415 (2) 0.0128 (4)
C6 0.4668 (3) 0.7715 (2) 0.5742 (2) 0.0136 (4)
H6 0.3973 0.8155 0.5272 0.016*
C7 0.3075 (3) 0.7199 (3) 0.7072 (2) 0.0138 (4)
C8 0.5237 (3) 0.5753 (2) 0.8532 (2) 0.0134 (4)
C9 0.8360 (3) 0.7090 (2) 0.5826 (2) 0.0131 (4)
C10 0.6099 (3) 0.8443 (2) 0.4328 (2) 0.0132 (4)
C11 0.0918 (3) 0.7909 (3) 0.1229 (2) 0.0171 (5)
C12 0.0210 (3) 0.8792 (3) 0.1604 (3) 0.0202 (5)
H12 0.0106 0.9548 0.1194 0.024*
C13 −0.0339 (3) 0.8546 (3) 0.2584 (3) 0.0215 (5)
H13 −0.0827 0.9131 0.2853 0.026*
C14 0.0488 (3) 0.6591 (3) 0.2804 (3) 0.0199 (5)
H14 0.0573 0.5842 0.3229 0.024*
C15 0.1047 (3) 0.6786 (3) 0.1820 (3) 0.0194 (5)
H15 0.1508 0.6169 0.1555 0.023*
C16 0.1542 (3) 0.8213 (3) 0.0175 (3) 0.0222 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0155 (8) 0.0324 (9) 0.0186 (8) 0.0140 (7) 0.0122 (7) 0.0092 (7)
O2 0.0233 (9) 0.0281 (9) 0.0162 (8) 0.0155 (7) 0.0150 (7) 0.0089 (7)
O3 0.0172 (8) 0.0267 (9) 0.0195 (8) 0.0122 (7) 0.0138 (7) 0.0133 (7)
O4 0.0156 (8) 0.0248 (8) 0.0150 (8) 0.0103 (7) 0.0104 (7) 0.0122 (7)
O5 0.0293 (10) 0.0366 (10) 0.0315 (10) 0.0243 (8) 0.0261 (8) 0.0242 (8)
O6 0.0232 (9) 0.0355 (10) 0.0279 (9) 0.0227 (8) 0.0213 (8) 0.0218 (8)
O7 0.0232 (9) 0.0193 (8) 0.0222 (9) 0.0103 (7) 0.0146 (7) 0.0108 (7)
O8 0.0294 (9) 0.0236 (9) 0.0135 (8) 0.0100 (8) 0.0128 (7) 0.0083 (7)
O9 0.0678 (16) 0.0473 (13) 0.0561 (14) 0.0395 (12) 0.0537 (13) 0.0393 (11)
O10 0.0327 (10) 0.0353 (10) 0.0244 (9) 0.0202 (9) 0.0230 (8) 0.0163 (8)
O1W 0.0305 (10) 0.0285 (10) 0.0195 (9) 0.0134 (8) 0.0150 (8) 0.0113 (8)
N1 0.0184 (10) 0.0241 (10) 0.0143 (9) 0.0065 (8) 0.0121 (8) 0.0060 (8)
C1 0.0124 (10) 0.0155 (10) 0.0121 (10) 0.0061 (8) 0.0083 (8) 0.0034 (8)
C2 0.0130 (10) 0.0158 (10) 0.0115 (10) 0.0078 (8) 0.0074 (8) 0.0050 (8)
C3 0.0129 (10) 0.0156 (10) 0.0133 (10) 0.0081 (8) 0.0081 (8) 0.0065 (8)
C4 0.0127 (10) 0.0146 (10) 0.0133 (10) 0.0076 (8) 0.0088 (8) 0.0046 (8)
C5 0.0136 (10) 0.0155 (10) 0.0102 (9) 0.0067 (8) 0.0070 (8) 0.0045 (8)
C6 0.0145 (10) 0.0183 (10) 0.0142 (10) 0.0106 (9) 0.0094 (9) 0.0073 (8)
C7 0.0178 (11) 0.0191 (11) 0.0156 (10) 0.0123 (9) 0.0129 (9) 0.0111 (9)
C8 0.0158 (10) 0.0150 (10) 0.0130 (10) 0.0079 (8) 0.0101 (9) 0.0044 (8)
C9 0.0127 (10) 0.0190 (11) 0.0133 (10) 0.0088 (9) 0.0098 (8) 0.0066 (8)
C10 0.0118 (10) 0.0198 (11) 0.0148 (10) 0.0107 (9) 0.0088 (8) 0.0089 (9)
C11 0.0172 (11) 0.0208 (11) 0.0147 (10) 0.0075 (9) 0.0104 (9) 0.0064 (9)
C12 0.0212 (12) 0.0207 (11) 0.0202 (11) 0.0093 (10) 0.0118 (10) 0.0081 (9)
C13 0.0213 (12) 0.0244 (12) 0.0220 (12) 0.0117 (10) 0.0138 (10) 0.0057 (10)
C14 0.0217 (12) 0.0233 (12) 0.0187 (11) 0.0103 (10) 0.0129 (10) 0.0097 (9)
C15 0.0218 (12) 0.0255 (12) 0.0187 (11) 0.0140 (10) 0.0135 (10) 0.0098 (10)
C16 0.0260 (13) 0.0313 (13) 0.0200 (11) 0.0160 (11) 0.0168 (10) 0.0135 (10)

Geometric parameters (Å, º)

O1—C7 1.260 (3) C1—C2 1.418 (3)
O2—C7 1.271 (3) C1—C7 1.528 (3)
O3—C8 1.234 (3) C2—C3 1.400 (3)
O4—C8 1.327 (3) C2—C8 1.497 (3)
O4—H4O 0.845 (10) C3—C4 1.401 (3)
O5—C9 1.232 (3) C3—H3 0.9500
O6—C9 1.303 (3) C4—C5 1.415 (3)
O6—H6O 0.847 (10) C4—C9 1.509 (3)
O7—C10 1.219 (3) C5—C6 1.404 (3)
O8—C10 1.333 (3) C5—C10 1.521 (3)
O8—H8O 0.846 (10) C6—H6 0.9500
O9—C16 1.221 (3) C11—C15 1.397 (3)
O10—C16 1.323 (3) C11—C12 1.398 (3)
O10—H10O 0.845 (10) C11—C16 1.519 (3)
O1W—H1W 0.849 (10) C12—C13 1.386 (3)
O1W—H2W 0.847 (10) C12—H12 0.9500
N1—C13 1.347 (3) C13—H13 0.9500
N1—C14 1.347 (3) C14—C15 1.389 (3)
N1—H1N 0.885 (10) C14—H14 0.9500
C1—C6 1.401 (3) C15—H15 0.9500
C8—O4—H4O 110 (2) O2—C7—C1 117.70 (19)
C9—O6—H6O 111 (3) O3—C8—O4 124.0 (2)
C10—O8—H8O 110 (3) O3—C8—C2 122.2 (2)
C16—O10—H10O 106 (2) O4—C8—C2 113.81 (18)
H1W—O1W—H2W 109.7 (16) O5—C9—O6 124.6 (2)
C13—N1—C14 123.1 (2) O5—C9—C4 120.44 (19)
C13—N1—H1N 116 (2) O6—C9—C4 114.93 (18)
C14—N1—H1N 121 (2) O7—C10—O8 125.1 (2)
C6—C1—C2 119.26 (19) O7—C10—C5 121.98 (19)
C6—C1—C7 117.27 (19) O8—C10—C5 112.69 (18)
C2—C1—C7 123.42 (19) C15—C11—C12 120.4 (2)
C3—C2—C1 119.65 (19) C15—C11—C16 121.5 (2)
C3—C2—C8 120.08 (19) C12—C11—C16 118.1 (2)
C1—C2—C8 120.27 (19) C13—C12—C11 118.8 (2)
C2—C3—C4 121.0 (2) C13—C12—H12 120.6
C2—C3—H3 119.5 C11—C12—H12 120.6
C4—C3—H3 119.5 N1—C13—C12 119.5 (2)
C3—C4—C5 119.42 (19) N1—C13—H13 120.2
C3—C4—C9 120.37 (19) C12—C13—H13 120.2
C5—C4—C9 120.19 (19) N1—C14—C15 119.7 (2)
C6—C5—C4 119.57 (19) N1—C14—H14 120.2
C6—C5—C10 116.79 (19) C15—C14—H14 120.2
C4—C5—C10 123.60 (19) C14—C15—C11 118.5 (2)
C5—C6—C1 121.1 (2) C14—C15—H15 120.7
C5—C6—H6 119.5 C11—C15—H15 120.7
C1—C6—H6 119.5 O9—C16—O10 125.4 (2)
O1—C7—O2 126.2 (2) O9—C16—C11 121.5 (2)
O1—C7—C1 116.06 (19) O10—C16—C11 113.1 (2)
C6—C1—C2—C3 0.1 (3) C3—C2—C8—O4 23.1 (3)
C7—C1—C2—C3 −177.2 (2) C1—C2—C8—O4 −157.40 (19)
C6—C1—C2—C8 −179.41 (19) C3—C4—C9—O5 −174.1 (2)
C7—C1—C2—C8 3.3 (3) C5—C4—C9—O5 4.3 (3)
C1—C2—C3—C4 −0.6 (3) C3—C4—C9—O6 4.6 (3)
C8—C2—C3—C4 178.9 (2) C5—C4—C9—O6 −177.0 (2)
C2—C3—C4—C5 0.3 (3) C6—C5—C10—O7 77.3 (3)
C2—C3—C4—C9 178.74 (19) C4—C5—C10—O7 −100.5 (3)
C3—C4—C5—C6 0.4 (3) C6—C5—C10—O8 −97.4 (2)
C9—C4—C5—C6 −178.04 (19) C4—C5—C10—O8 84.8 (3)
C3—C4—C5—C10 178.15 (19) C15—C11—C12—C13 0.8 (4)
C9—C4—C5—C10 −0.3 (3) C16—C11—C12—C13 −178.9 (2)
C4—C5—C6—C1 −0.9 (3) C14—N1—C13—C12 −0.7 (4)
C10—C5—C6—C1 −178.77 (19) C11—C12—C13—N1 0.1 (4)
C2—C1—C6—C5 0.6 (3) C13—N1—C14—C15 0.3 (4)
C7—C1—C6—C5 178.1 (2) N1—C14—C15—C11 0.6 (4)
C6—C1—C7—O1 64.6 (3) C12—C11—C15—C14 −1.2 (4)
C2—C1—C7—O1 −118.1 (2) C16—C11—C15—C14 178.6 (2)
C6—C1—C7—O2 −112.4 (2) C15—C11—C16—O9 −171.1 (3)
C2—C1—C7—O2 64.9 (3) C12—C11—C16—O9 8.7 (4)
C3—C2—C8—O3 −157.6 (2) C15—C11—C16—O10 9.1 (3)
C1—C2—C8—O3 21.9 (3) C12—C11—C16—O10 −171.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O3i 0.84 (3) 1.82 (3) 2.654 (3) 176 (3)
O6—H6O···O1ii 0.85 (5) 1.69 (5) 2.534 (3) 174 (5)
O8—H8O···O1W 0.85 (5) 1.79 (5) 2.634 (3) 171 (6)
O10—H10O···O2iii 0.85 (4) 1.78 (4) 2.625 (3) 172 (4)
N1—H1N···O5iv 0.89 (4) 1.86 (4) 2.711 (3) 160 (4)
O1W—H1W···O2v 0.85 (2) 2.16 (2) 2.957 (3) 156 (3)
O1W—H2W···O2iii 0.85 (1) 2.05 (2) 2.853 (3) 158 (4)
C6—H6···O7v 0.95 2.40 3.267 (3) 151
C12—H12···O9vi 0.95 2.35 3.179 (4) 146
C14—H14···O6vii 0.95 2.40 3.300 (4) 159

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) x, y, z−1; (iv) x−1, y, z; (v) −x+1, −y+2, −z+1; (vi) −x, −y+2, −z; (vii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7093).

References

  1. Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. [DOI] [PubMed]
  2. Arman, H. D. & Tiekink, E. R. T. (2013a). J. Chem. Crystallogr. 43, 134–137.
  3. Arman, H. D. & Tiekink, E. R. T. (2013b). Z. Kristallogr. Cryst. Mat 228, 10.1524/zkri.2013.1612.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Chemaxon (2009). MarvinSketch. www.chemaxon.com.
  6. Dos Santos, L. H. R., Rodrigues, B. L., Idemori, Y. M. & Fernandes, N. G. (2012). J. Mol. Struct 1014, 102–109.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  9. Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Takusagawa, F. & Shimada, A. (1976). Acta Cryst. B32, 1925–1927.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016437/hb7093sup1.cif

e-69-o1122-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016437/hb7093Isup2.hkl

e-69-o1122-Isup2.hkl (164KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016437/hb7093Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES