Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 22;69(Pt 7):o1136. doi: 10.1107/S1600536813016887

1-Benzyl-5-ethyl-5-hy­droxy-1H-pyrrol-2(5H)-one

Yan-Jiao Gao a, Yu-Huang Wang a, Jian-Liang Ye a,*
PMCID: PMC3770402  PMID: 24046687

Abstract

The title compound, C13H15NO2, was obtained as a by-product in the Grignard reaction of malimide. The dihedral angle between the five-memebred ring (r.m.s. deviation = 0.005 Å) and the benzene ring is 67.20 (14)°. The benzene ring and the ethyl chain lie to the same side of the five-membered ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, generating C(6) chains propagating in [010].

Related literature  

For background to the Grignard reaction of malimide, see: Huang (2006); He et al. (2003). For related structures, see: Goh et al. (2007); Ma & Xie (2002).graphic file with name e-69-o1136-scheme1.jpg

Experimental  

Crystal data  

  • C13H15NO2

  • M r = 215.27

  • Monoclinic, Inline graphic

  • a = 7.0399 (14) Å

  • b = 7.1795 (14) Å

  • c = 11.817 (2) Å

  • β = 102.72 (3)°

  • V = 582.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.980, T max = 0.983

  • 3363 measured reflections

  • 1947 independent reflections

  • 1811 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.145

  • S = 1.13

  • 1947 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813016887/hb7096sup1.cif

e-69-o1136-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016887/hb7096Isup2.hkl

e-69-o1136-Isup2.hkl (95.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016887/hb7096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.95 2.772 (3) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the NSF of Fujian Province of China (2011J01056) for financial support.

supplementary crystallographic information

Comment

Using Grignard reagents as the nucleophiles allows a flexible introduction of diverse side chains at the C-2 carbonyl of malimides (Huang, 2006). In addition, Grignard reagents are essentially strong bases, so the addition of a Grignard reagent to a malimide provided an unexpected 3-alkoxy group elimination product rac-1-benzyl-5-methyl-1H-pyrrol-2(5H)-one (He et al., 2003). Recently a new addition-elimination product, rac-1-benzyl-5-ethyl-5-hydroxy-1H-pyrrol-2(5H)-one, was found in the Grignard addition reaction. Here we report the structure of the title compound.

In γ-lactam ring the vinyl carbon atoms remain almost coplanar with the amide moiety [r.m.s. 0.0006 Å], which are agreement with the similar compounds (Goh et al., 2007; Ma & Xie, 2002). In the crystal, the molecules are linked by O—H···O hydrogen bonds between the hydroxyl group and the oxygen atom of the carbonyl group.

Experimental

To a stirred solution of (S)-N,O-benzyl-malimide ((S)-1-benzyl-3-(benzyloxy)pyrrolidine-2,5-dione) (2 mmol) in anhydrous CH2Cl2 (20 ml) was added dropwise EtMgBr (4 mmol) in diethyl ether at -20 °C under nitrogen atmosphere. The mixture was stirred at -20 °C for 1 h and then quenched by adding a saturated aqueous solution of NH4Cl. The mixture was extracted with CH2Cl2 (4 × 10 ml). The combined extracts were washed with brine, dried over Na2SO4, concentrated under reduced pressure. The residue was purified by flash chromatography (eluent: EtOAc/PE = 1: 2; then 2: 1), provided a mixture of diastereomers (4S)-1-benzyl-4-(benzyloxy)-5-ethyl-5-hydroxypyrrolidin-2-one as major products (white crystals, yield 85%) and the title compound as minor product (colourless crystals, yield 10%). Colourless pillars of the tiltle compound were obtained by slow evaporation of a mixture of n-hexane/ethyl acetate solution.

Refinement

The hydrogen atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for phenyl, methine, methylene and methyl H atoms, respectively, and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5Ueq(C), while those of other H atoms were set to 1.2Ueq(C). In the absence of significant anomalous scattering effects the absolute structure of the chosen crystal was indeterminate.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of the molecules, viewed down the a axis. O—H···O hydrogen bond interactions are shown as dashed lines.

Crystal data

C13H15NO2 F(000) = 230
Mr = 215.27 Dx = 1.227 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.0399 (14) Å Cell parameters from 2119 reflections
b = 7.1795 (14) Å θ = 3.0–27.0°
c = 11.817 (2) Å µ = 0.08 mm1
β = 102.72 (3)° T = 173 K
V = 582.6 (2) Å3 Pillar, colourless
Z = 2 0.3 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur (Sapphire3, Gemini ultra) diffractometer 1947 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1811 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 16.1903 pixels mm-1 θmax = 27.0°, θmin = 3.0°
phi and ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −9→9
Tmin = 0.980, Tmax = 0.983 l = −14→15
3363 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.0423P] where P = (Fo2 + 2Fc2)/3
1947 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.25 e Å3
1 restraint Δρmin = −0.32 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2177 (3) 0.6481 (3) 0.96950 (15) 0.0294 (4)
N1 −0.0106 (3) 0.7331 (3) 0.85306 (15) 0.0214 (4)
C1 −0.2478 (4) 0.4825 (5) 0.4747 (2) 0.0383 (7)
H1A −0.2359 0.4924 0.3981 0.046*
O2 0.2472 (3) 0.9389 (2) 0.83792 (15) 0.0294 (4)
H2A 0.2397 1.0049 0.8934 0.044*
C2 −0.3230 (4) 0.3208 (5) 0.5114 (2) 0.0403 (7)
H2B −0.36 0.2222 0.4602 0.048*
C3 −0.3426 (4) 0.3079 (5) 0.6254 (2) 0.0352 (6)
H3A −0.3927 0.2 0.6511 0.042*
C4 0.2774 (4) 0.6967 (4) 0.9869 (2) 0.0291 (6)
H4A 0.4086 0.6937 1.0235 0.035*
C5 −0.1894 (4) 0.6312 (4) 0.5507 (2) 0.0325 (6)
H5A −0.1362 0.738 0.5255 0.039*
C6 −0.1548 (4) 0.7814 (4) 0.74846 (19) 0.0254 (5)
H6A −0.1033 0.8808 0.7084 0.03*
H6B −0.2707 0.8281 0.7706 0.03*
C7 0.2009 (4) 0.7521 (3) 0.8611 (2) 0.0241 (5)
C8 −0.2875 (4) 0.4557 (4) 0.7009 (2) 0.0283 (6)
H8A −0.3016 0.4459 0.7771 0.034*
C9 −0.0541 (3) 0.6758 (3) 0.95313 (19) 0.0225 (5)
C10 −0.2118 (3) 0.6177 (4) 0.66498 (19) 0.0252 (5)
C11 0.1357 (4) 0.6535 (4) 1.0372 (2) 0.0300 (6)
H11A 0.151 0.6149 1.1138 0.036*
C12 0.2726 (4) 0.6284 (4) 0.7756 (2) 0.0286 (6)
H12A 0.4104 0.652 0.7826 0.034*
H12B 0.2061 0.6643 0.6978 0.034*
C13 0.2442 (4) 0.4196 (4) 0.7893 (2) 0.0335 (6)
H13A 0.2931 0.3535 0.7311 0.05*
H13B 0.1081 0.3932 0.7807 0.05*
H13C 0.3136 0.3806 0.8649 0.05*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0328 (9) 0.0290 (11) 0.0303 (9) −0.0023 (8) 0.0153 (7) −0.0011 (8)
N1 0.0209 (9) 0.0227 (10) 0.0203 (8) 0.0000 (8) 0.0035 (7) −0.0002 (8)
C1 0.0360 (14) 0.053 (2) 0.0254 (12) 0.0033 (15) 0.0061 (10) −0.0087 (13)
O2 0.0358 (10) 0.0214 (10) 0.0325 (9) −0.0076 (8) 0.0104 (7) 0.0009 (7)
C2 0.0317 (14) 0.052 (2) 0.0370 (14) −0.0020 (14) 0.0067 (11) −0.0215 (14)
C3 0.0295 (14) 0.0360 (16) 0.0398 (14) −0.0060 (12) 0.0068 (11) −0.0067 (12)
C4 0.0289 (12) 0.0263 (14) 0.0283 (11) −0.0024 (11) −0.0020 (9) 0.0022 (10)
C5 0.0311 (13) 0.0398 (16) 0.0260 (12) 0.0042 (12) 0.0049 (10) 0.0011 (12)
C6 0.0249 (12) 0.0254 (13) 0.0242 (11) 0.0054 (10) 0.0017 (9) 0.0016 (10)
C7 0.0224 (11) 0.0218 (13) 0.0274 (11) −0.0005 (10) 0.0039 (8) 0.0017 (10)
C8 0.0237 (11) 0.0339 (16) 0.0268 (11) 0.0028 (11) 0.0047 (8) −0.0044 (11)
C9 0.0300 (12) 0.0150 (11) 0.0230 (10) −0.0016 (10) 0.0069 (8) −0.0021 (9)
C10 0.0196 (10) 0.0320 (14) 0.0222 (10) 0.0058 (11) 0.0004 (8) −0.0033 (10)
C11 0.0363 (13) 0.0278 (14) 0.0225 (11) −0.0053 (12) −0.0008 (9) 0.0013 (10)
C12 0.0244 (12) 0.0275 (14) 0.0362 (13) 0.0000 (10) 0.0118 (9) 0.0008 (11)
C13 0.0310 (14) 0.0260 (13) 0.0449 (14) 0.0059 (12) 0.0114 (11) −0.0022 (12)

Geometric parameters (Å, º)

O1—C9 1.225 (3) C5—C10 1.397 (3)
N1—C9 1.349 (3) C5—H5A 0.93
N1—C6 1.458 (3) C6—C10 1.530 (3)
N1—C7 1.477 (3) C6—H6A 0.97
C1—C2 1.385 (5) C6—H6B 0.97
C1—C5 1.397 (4) C7—C12 1.513 (4)
C1—H1A 0.93 C8—C10 1.384 (4)
O2—C7 1.421 (3) C8—H8A 0.93
O2—H2A 0.82 C9—C11 1.488 (3)
C2—C3 1.387 (4) C11—H11A 0.93
C2—H2B 0.93 C12—C13 1.526 (4)
C3—C8 1.386 (4) C12—H12A 0.97
C3—H3A 0.93 C12—H12B 0.97
C4—C11 1.306 (4) C13—H13A 0.96
C4—C7 1.518 (3) C13—H13B 0.96
C4—H4A 0.93 C13—H13C 0.96
C9—N1—C6 124.4 (2) O2—C7—C4 112.9 (2)
C9—N1—C7 113.05 (18) N1—C7—C4 100.05 (19)
C6—N1—C7 122.47 (19) C12—C7—C4 113.7 (2)
C2—C1—C5 121.2 (2) C10—C8—C3 121.2 (2)
C2—C1—H1A 119.4 C10—C8—H8A 119.4
C5—C1—H1A 119.4 C3—C8—H8A 119.4
C7—O2—H2A 109.5 O1—C9—N1 126.2 (2)
C1—C2—C3 119.1 (3) O1—C9—C11 127.9 (2)
C1—C2—H2B 120.4 N1—C9—C11 105.9 (2)
C3—C2—H2B 120.4 C8—C10—C5 119.2 (2)
C8—C3—C2 120.0 (3) C8—C10—C6 120.7 (2)
C8—C3—H3A 120 C5—C10—C6 120.0 (2)
C2—C3—H3A 120 C4—C11—C9 109.5 (2)
C11—C4—C7 111.5 (2) C4—C11—H11A 125.3
C11—C4—H4A 124.3 C9—C11—H11A 125.3
C7—C4—H4A 124.3 C7—C12—C13 115.8 (2)
C10—C5—C1 119.2 (3) C7—C12—H12A 108.3
C10—C5—H5A 120.4 C13—C12—H12A 108.3
C1—C5—H5A 120.4 C7—C12—H12B 108.3
N1—C6—C10 113.5 (2) C13—C12—H12B 108.3
N1—C6—H6A 108.9 H12A—C12—H12B 107.4
C10—C6—H6A 108.9 C12—C13—H13A 109.5
N1—C6—H6B 108.9 C12—C13—H13B 109.5
C10—C6—H6B 108.9 H13A—C13—H13B 109.5
H6A—C6—H6B 107.7 C12—C13—H13C 109.5
O2—C7—N1 110.21 (19) H13A—C13—H13C 109.5
O2—C7—C12 107.48 (19) H13B—C13—H13C 109.5
N1—C7—C12 112.5 (2)
C5—C1—C2—C3 0.8 (4) C7—N1—C9—O1 −179.5 (2)
C1—C2—C3—C8 0.1 (4) C6—N1—C9—C11 −176.7 (2)
C2—C1—C5—C10 −1.5 (4) C7—N1—C9—C11 0.3 (3)
C9—N1—C6—C10 −92.1 (3) C3—C8—C10—C5 −0.5 (4)
C7—N1—C6—C10 91.2 (3) C3—C8—C10—C6 178.9 (2)
C9—N1—C7—O2 −119.7 (2) C1—C5—C10—C8 1.4 (4)
C6—N1—C7—O2 57.4 (3) C1—C5—C10—C6 −178.0 (2)
C9—N1—C7—C12 120.4 (2) N1—C6—C10—C8 57.8 (3)
C6—N1—C7—C12 −62.5 (3) N1—C6—C10—C5 −122.8 (2)
C9—N1—C7—C4 −0.6 (3) C7—C4—C11—C9 −0.6 (3)
C6—N1—C7—C4 176.5 (2) O1—C9—C11—C4 180.0 (3)
C11—C4—C7—O2 117.8 (3) N1—C9—C11—C4 0.2 (3)
C11—C4—C7—N1 0.7 (3) O2—C7—C12—C13 177.5 (2)
C11—C4—C7—C12 −119.4 (3) N1—C7—C12—C13 −61.0 (3)
C2—C3—C8—C10 −0.2 (4) C4—C7—C12—C13 51.8 (3)
C6—N1—C9—O1 3.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1i 0.82 1.95 2.772 (3) 176

Symmetry code: (i) −x, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7096).

References

  1. Goh, W. K., Iskander, G., Black, D. S. & Kumar, N. (2007). Tetrahedron Lett. 48, 2287–2290.
  2. He, B. Y., Wu, T. J., Yu, X. Y. & Huang, P. Q. (2003). Tetrahedron Asymmetry, 14, 2101–2108.
  3. Huang, P.-Q. (2006). Synlett, pp. 1133–1149.
  4. Ma, S. & Xie, H. (2002). J. Org. Chem. 67, 6575–6578. [DOI] [PubMed]
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813016887/hb7096sup1.cif

e-69-o1136-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016887/hb7096Isup2.hkl

e-69-o1136-Isup2.hkl (95.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016887/hb7096Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES