Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 22;69(Pt 7):o1137. doi: 10.1107/S1600536813016899

5-Chloro-N′-cyclo­hexyl­idene-3-methyl-1H-indole-2-carbohydrazide

Mehmet Akkurt a,*, Muhammet Zopun b, Gültaze Çapan b, Orhan Büyükgüngör c
PMCID: PMC3770403  PMID: 24046688

Abstract

In the title compound, C16H18ClN3O, the cyclo­hexane ring adopts a distorted chair conformation. In the crystal, pairs of mol­ecules are linked by N—H⋯O hydrogen bonds into inversion dimers, forming R 2 2(10) ring motifs. These dimers are connected through C—H⋯N hydrogen bonds into chains along the a axis, forming layers parallel to (101).

Related literature  

For the design, synthesis and characterization of some bioactive indole derivatives, see: Akkurt et al. (2009, 2010); Cihan-Üstündağ & Çapan (2012); Güzel et al. (2006); Kaynak et al. (2005). For puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-o1137-scheme1.jpg

Experimental  

Crystal data  

  • C16H18ClN3O

  • M r = 303.78

  • Triclinic, Inline graphic

  • a = 5.2727 (5) Å

  • b = 9.7977 (9) Å

  • c = 15.2380 (15) Å

  • α = 102.229 (7)°

  • β = 95.732 (8)°

  • γ = 92.332 (7)°

  • V = 763.94 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.76 × 0.36 × 0.02 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.831, T max = 0.995

  • 7177 measured reflections

  • 2929 independent reflections

  • 1684 reflections with I > 2σ(I)

  • R int = 0.065

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.129

  • S = 1.01

  • 2929 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016899/sj5335sup1.cif

e-69-o1137-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016899/sj5335Isup2.hkl

e-69-o1137-Isup2.hkl (143.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016899/sj5335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.03 2.826 (3) 153
C12—H12B⋯N3ii 0.97 2.59 3.476 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported in part by the Scientific Research Projects Coordination Unit of Istanbul University (project No. 20867).

supplementary crystallographic information

Comment

Cyclohexylidenehydrazides are of interest, both as potential intermediates for the synthesis of novel heterocyclic systems and as pharmacologically active agents. We have recently reported on the synthesis, antitituberculosis and anticancer properties of cyclohexylidenehydrazides and spirothiazolidinones with an indole core (Cihan-Üstündağ & Çapan, 2012). As a continuation of our program directed towards the design, synthesis and characterization of bioactive indole derivatives (Akkurt et al., 2009, 2010; Güzel et al., 2006; Kaynak et al., 2005), we report here the synthesis, spectral and analytical data and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the nine-membered 1H-indole ring (N1/C1–C8) is essentially planar with maximum deviations of 0.019 (3) Å for C3, 0.017 (3) Å for C7 and -0.017 (3) Å for C1]. The cyclohexane ring (C11–C16) of (I) adopts a distorted chair conformation [the puckering parameters (Cremer & Pople, 1975) are QT = 0.508 (4) Å, θ = 10.2 (5)° and φ = 193 (2) °]. The C7–C8–C10–N2, C7–C8–C10–O1, N1–C8–C10–O1, N1–C8–C10–N2, C8–C10–N2–N3 and C10–N2–N3–C11 torsion angles are -19.5 (5), 158.3 (3), -14.4 (4), 167.7 (3), -179.6 (2) and -172.8 (3)°, respectively.

In the crystal, pairs of N—H···O hydrogen bonds link molecules into inversion dimers, with the R22(10) ring motifs (Table 1, Fig. 2; Bernstein et al., 1995). These dimers connect to each other through C—H···N hydrogen bonds as chains along the a axis, forming layers parallel to the (101) plane. In the crystal structure, π-π and C—H···π interactions were not observed.

Experimental

A mixture of 5-chloro-3-methyl-1H-indole-2-carbohydrazide (0.005 mol) and cyclohexanone (0.006 mol) in 15 ml of absolute ethanol was heated under reflux for 3 h. The crude product obtained on cooling was filtered and purified by recrystallization from ethanol. [Yield: 91.4%, m.p.: 505–507 K].

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The H atom (H1) of the one of the two amide groups was positioned geometrically with N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(N). The H atom (H2A) of the other amide group was found in a difference Fourier map, restrained with N—H = 0.82 (3) Å and refined with Uiso = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The title molecule shown the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the packing of the title compound with the N—H···O dimers, down the b axis. H atoms not participating in hydrogen bonding have been omitted for clarity and hydrogen bonds are drawn as dashed lines.

Crystal data

C16H18ClN3O Z = 2
Mr = 303.78 F(000) = 320
Triclinic, P1 Dx = 1.321 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.2727 (5) Å Cell parameters from 9705 reflections
b = 9.7977 (9) Å θ = 2.1–28.0°
c = 15.2380 (15) Å µ = 0.25 mm1
α = 102.229 (7)° T = 296 K
β = 95.732 (8)° Plate, colourless
γ = 92.332 (7)° 0.76 × 0.36 × 0.02 mm
V = 763.94 (13) Å3

Data collection

Stoe IPDS 2 diffractometer 2929 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1684 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.065
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 2.1°
ω scans h = −6→6
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −12→12
Tmin = 0.831, Tmax = 0.995 l = −18→18
7177 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0554P)2] where P = (Fo2 + 2Fc2)/3
2929 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Experimental. UV (EtOH) λmax(nm)(ε) = 210.2 (11298); 230.6 (15341); 303.4 (14665). IR(KBr)ν = 3278 (N—H); 1639 (C=O);1624, 1537, 1514, 1471 (C=N, C=C) cm-1. 1H-NMR (500 MHz) (DMSO-d6 / TMS) d =1.56–1.72 (6H, m, CH2-cyc.*), 2.32 (2H, t, J=6.8 Hz, CH2-cyc.) 2.42–2.48 (5H, m, CH2-cyc. and 3-CH3-ind.*), 7.20 (1H, dd, J=8.7, 1.9 Hz, H6-ind.), 7.41 (1H, d, J=8.7 Hz, H7-ind.), 7.66 (1H, d, J=1.9 Hz, H4-ind.), 10.30 (1H, s, CONH), 11.50 (1H, s, NH-ind.) p.p.m.. MS (ESI–) m/z (%) = 302 ([M—H]-, 100). Analysis calculated for C16H18ClN3O: C 63.26, H 5.97, N 13.83%. Found: C 63.12, H 5.97, N 13.86%.(*cyc. = cyclohexylidene, ind. = indole).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5891 (2) 0.46594 (11) 0.20802 (7) 0.1086 (4)
O1 0.1519 (4) 0.0786 (2) 0.61618 (12) 0.0717 (7)
N1 0.2262 (4) 0.1409 (2) 0.45351 (13) 0.0589 (8)
N2 0.5585 (5) 0.1489 (3) 0.67430 (15) 0.0597 (8)
N3 0.5305 (4) 0.1037 (2) 0.75354 (15) 0.0628 (8)
C1 0.2826 (5) 0.2059 (3) 0.38687 (17) 0.0538 (8)
C2 0.1513 (6) 0.1988 (3) 0.30110 (18) 0.0654 (10)
C3 0.2502 (6) 0.2795 (3) 0.24870 (19) 0.0705 (11)
C4 0.4744 (6) 0.3636 (3) 0.27889 (19) 0.0691 (11)
C5 0.6043 (5) 0.3719 (3) 0.3623 (2) 0.0648 (10)
C6 0.5060 (4) 0.2920 (3) 0.41855 (17) 0.0508 (8)
C7 0.5838 (4) 0.2775 (3) 0.50912 (16) 0.0512 (8)
C8 0.4070 (5) 0.1827 (3) 0.52722 (16) 0.0511 (8)
C9 0.8061 (5) 0.3606 (3) 0.5689 (2) 0.0686 (10)
C10 0.3624 (5) 0.1311 (3) 0.60883 (17) 0.0543 (9)
C11 0.7122 (5) 0.1360 (3) 0.81721 (18) 0.0597 (9)
C12 0.9530 (6) 0.2231 (4) 0.8204 (2) 0.0866 (13)
C13 1.0168 (7) 0.3247 (4) 0.9086 (2) 0.0993 (16)
C14 1.0052 (7) 0.2603 (4) 0.9900 (2) 0.0876 (13)
C15 0.7463 (6) 0.1875 (4) 0.9862 (2) 0.0837 (13)
C16 0.6818 (6) 0.0800 (4) 0.9003 (2) 0.0820 (11)
H1 0.09730 0.08260 0.45020 0.0710*
H2 0.00300 0.14140 0.28090 0.0790*
H2A 0.701 (5) 0.174 (3) 0.6650 (17) 0.054 (8)*
H3 0.16670 0.27840 0.19180 0.0850*
H5 0.75350 0.42900 0.38110 0.0780*
H9A 0.85040 0.44140 0.54590 0.1030*
H9B 0.94970 0.30360 0.56980 0.1030*
H9C 0.76010 0.39010 0.62910 0.1030*
H12A 0.93570 0.27410 0.77230 0.1040*
H12B 1.09240 0.16220 0.80990 0.1040*
H13A 0.89910 0.39870 0.91220 0.1190*
H13B 1.18740 0.36690 0.91050 0.1190*
H14A 1.13590 0.19360 0.99100 0.1050*
H14B 1.03740 0.33270 1.04480 0.1050*
H15A 0.74350 0.14270 1.03710 0.1010*
H15B 0.61810 0.25620 0.99110 0.1010*
H16A 0.50660 0.04370 0.89750 0.0980*
H16B 0.79110 0.00290 0.90090 0.0980*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1362 (8) 0.1232 (8) 0.0844 (7) −0.0039 (6) 0.0217 (6) 0.0607 (6)
O1 0.0767 (12) 0.0851 (14) 0.0498 (11) −0.0264 (11) −0.0034 (9) 0.0179 (10)
N1 0.0662 (13) 0.0625 (14) 0.0445 (12) −0.0171 (11) −0.0010 (10) 0.0109 (10)
N2 0.0590 (13) 0.0774 (16) 0.0448 (13) −0.0043 (12) 0.0028 (11) 0.0210 (11)
N3 0.0722 (14) 0.0709 (15) 0.0491 (13) −0.0018 (12) 0.0054 (12) 0.0236 (12)
C1 0.0654 (15) 0.0521 (15) 0.0427 (14) 0.0010 (13) 0.0064 (12) 0.0080 (12)
C2 0.0775 (17) 0.0694 (18) 0.0455 (15) −0.0025 (15) −0.0039 (14) 0.0102 (13)
C3 0.090 (2) 0.077 (2) 0.0444 (15) 0.0084 (17) 0.0005 (15) 0.0155 (14)
C4 0.0879 (19) 0.0721 (19) 0.0551 (18) 0.0077 (16) 0.0153 (16) 0.0274 (15)
C5 0.0675 (16) 0.0657 (17) 0.0633 (18) −0.0028 (14) 0.0096 (14) 0.0193 (14)
C6 0.0536 (13) 0.0520 (15) 0.0471 (14) 0.0049 (12) 0.0050 (11) 0.0116 (12)
C7 0.0511 (13) 0.0536 (15) 0.0463 (14) 0.0012 (12) 0.0006 (11) 0.0079 (12)
C8 0.0570 (14) 0.0540 (15) 0.0407 (14) 0.0021 (13) 0.0014 (11) 0.0086 (12)
C9 0.0648 (16) 0.078 (2) 0.0613 (17) −0.0071 (15) −0.0059 (14) 0.0197 (15)
C10 0.0659 (16) 0.0502 (15) 0.0431 (14) −0.0023 (13) 0.0016 (13) 0.0054 (12)
C11 0.0635 (15) 0.0719 (18) 0.0463 (15) 0.0060 (14) 0.0073 (13) 0.0177 (13)
C12 0.0652 (17) 0.143 (3) 0.0556 (18) −0.0114 (19) 0.0048 (14) 0.0348 (19)
C13 0.112 (3) 0.122 (3) 0.065 (2) −0.040 (2) −0.0189 (19) 0.045 (2)
C14 0.099 (2) 0.112 (3) 0.0530 (18) −0.013 (2) −0.0066 (17) 0.0313 (18)
C15 0.092 (2) 0.116 (3) 0.0491 (17) 0.000 (2) 0.0086 (16) 0.0325 (18)
C16 0.097 (2) 0.092 (2) 0.0633 (19) −0.0084 (19) −0.0014 (17) 0.0386 (18)

Geometric parameters (Å, º)

Cl1—C4 1.754 (3) C12—C13 1.492 (5)
O1—C10 1.230 (3) C13—C14 1.511 (5)
N1—C1 1.358 (3) C14—C15 1.504 (5)
N1—C8 1.378 (3) C15—C16 1.495 (5)
N2—N3 1.390 (3) C2—H2 0.9300
N2—C10 1.342 (4) C3—H3 0.9300
N3—C11 1.272 (3) C5—H5 0.9300
N1—H1 0.8600 C9—H9A 0.9600
N2—H2A 0.82 (3) C9—H9B 0.9600
C1—C2 1.403 (4) C9—H9C 0.9600
C1—C6 1.402 (4) C12—H12A 0.9700
C2—C3 1.361 (4) C12—H12B 0.9700
C3—C4 1.393 (4) C13—H13A 0.9700
C4—C5 1.367 (4) C13—H13B 0.9700
C5—C6 1.399 (4) C14—H14A 0.9700
C6—C7 1.438 (4) C14—H14B 0.9700
C7—C9 1.504 (4) C15—H15A 0.9700
C7—C8 1.377 (4) C15—H15B 0.9700
C8—C10 1.474 (4) C16—H16A 0.9700
C11—C16 1.503 (4) C16—H16B 0.9700
C11—C12 1.492 (4)
C1—N1—C8 109.6 (2) C3—C2—H2 121.00
N3—N2—C10 120.0 (2) C2—C3—H3 119.00
N2—N3—C11 117.5 (2) C4—C3—H3 120.00
C8—N1—H1 125.00 C4—C5—H5 121.00
C1—N1—H1 125.00 C6—C5—H5 121.00
N3—N2—H2A 118.7 (18) C7—C9—H9A 109.00
C10—N2—H2A 120.5 (18) C7—C9—H9B 109.00
N1—C1—C6 107.7 (2) C7—C9—H9C 109.00
C2—C1—C6 122.3 (3) H9A—C9—H9B 109.00
N1—C1—C2 130.0 (3) H9A—C9—H9C 109.00
C1—C2—C3 117.2 (3) H9B—C9—H9C 110.00
C2—C3—C4 121.1 (3) C11—C12—H12A 109.00
Cl1—C4—C3 118.5 (2) C11—C12—H12B 109.00
Cl1—C4—C5 119.0 (2) C13—C12—H12A 109.00
C3—C4—C5 122.5 (3) C13—C12—H12B 109.00
C4—C5—C6 118.0 (3) H12A—C12—H12B 108.00
C1—C6—C5 119.0 (2) C12—C13—H13A 109.00
C5—C6—C7 133.4 (2) C12—C13—H13B 109.00
C1—C6—C7 107.6 (2) C14—C13—H13A 109.00
C6—C7—C8 105.7 (2) C14—C13—H13B 109.00
C6—C7—C9 123.9 (2) H13A—C13—H13B 108.00
C8—C7—C9 130.3 (2) C13—C14—H14A 110.00
C7—C8—C10 133.6 (2) C13—C14—H14B 110.00
N1—C8—C7 109.5 (2) C15—C14—H14A 110.00
N1—C8—C10 116.6 (2) C15—C14—H14B 110.00
O1—C10—C8 120.5 (2) H14A—C14—H14B 108.00
N2—C10—C8 116.7 (2) C14—C15—H15A 109.00
O1—C10—N2 122.8 (3) C14—C15—H15B 109.00
N3—C11—C12 128.4 (3) C16—C15—H15A 109.00
N3—C11—C16 116.3 (3) C16—C15—H15B 109.00
C12—C11—C16 115.3 (2) H15A—C15—H15B 108.00
C11—C12—C13 112.6 (3) C11—C16—H16A 109.00
C12—C13—C14 113.9 (3) C11—C16—H16B 109.00
C13—C14—C15 109.9 (3) C15—C16—H16A 109.00
C14—C15—C16 111.7 (3) C15—C16—H16B 109.00
C11—C16—C15 113.3 (3) H16A—C16—H16B 108.00
C1—C2—H2 121.00
C1—N1—C8—C10 174.9 (2) C4—C5—C6—C7 −177.9 (3)
C8—N1—C1—C2 −178.3 (3) C5—C6—C7—C9 3.2 (5)
C8—N1—C1—C6 0.0 (3) C5—C6—C7—C8 179.7 (3)
C1—N1—C8—C7 0.5 (3) C1—C6—C7—C8 0.8 (3)
N3—N2—C10—C8 179.6 (2) C1—C6—C7—C9 −175.7 (2)
N3—N2—C10—O1 1.8 (4) C6—C7—C8—C10 −173.9 (3)
C10—N2—N3—C11 −172.8 (3) C9—C7—C8—C10 2.3 (5)
N2—N3—C11—C16 −177.2 (3) C9—C7—C8—N1 175.4 (3)
N2—N3—C11—C12 2.9 (4) C6—C7—C8—N1 −0.8 (3)
N1—C1—C6—C7 −0.5 (3) N1—C8—C10—N2 167.7 (3)
C6—C1—C2—C3 0.2 (4) C7—C8—C10—O1 158.3 (3)
N1—C1—C6—C5 −179.6 (2) C7—C8—C10—N2 −19.5 (5)
C2—C1—C6—C7 178.0 (3) N1—C8—C10—O1 −14.4 (4)
C2—C1—C6—C5 −1.1 (4) N3—C11—C12—C13 136.1 (3)
N1—C1—C2—C3 178.2 (3) C16—C11—C12—C13 −43.7 (4)
C1—C2—C3—C4 1.0 (4) N3—C11—C16—C15 −134.0 (3)
C2—C3—C4—Cl1 −179.5 (2) C12—C11—C16—C15 45.9 (4)
C2—C3—C4—C5 −1.1 (5) C11—C12—C13—C14 49.1 (4)
C3—C4—C5—C6 0.1 (4) C12—C13—C14—C15 −55.6 (4)
Cl1—C4—C5—C6 178.5 (2) C13—C14—C15—C16 56.2 (4)
C4—C5—C6—C1 1.0 (4) C14—C15—C16—C11 −52.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.03 2.826 (3) 153
C12—H12A···N2 0.97 2.47 2.842 (4) 102
C12—H12B···N3ii 0.97 2.59 3.476 (4) 152

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5335).

References

  1. Akkurt, M., Çelik, Í., Cihan, G., Çapan, G. & Büyükgüngör, O. (2010). Acta Cryst. E66, o830. [DOI] [PMC free article] [PubMed]
  2. Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Cihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525–539. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Güzel, O., Terzioğlu, N., Çapan, G. & Salman, A. (2006). Arkivoc, xii, 98–110.
  8. Kaynak, F. B., Öztürk, D., Özbey, S. & Çapan, G. (2005). J. Mol. Struct. 740, 213–221.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813016899/sj5335sup1.cif

e-69-o1137-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016899/sj5335Isup2.hkl

e-69-o1137-Isup2.hkl (143.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813016899/sj5335Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES