Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 22;69(Pt 7):o1145–o1146. doi: 10.1107/S1600536813016759

Bis[1-(2,3-di­methyl­phen­yl)piperazine-1,4-diium] bis­(oxonium) cyclo­hexa­phosphate dihydrate

Iness Ameur a, Sonia Abid a,*, Salem S Al-Deyab b, Mohamed Rzaigui a
PMCID: PMC3770409  PMID: 24046694

Abstract

In the title compound, 2C12H20N2 2+·2H3O+·P6O18 6−·2H2O, a protonated water mol­ecule bridges the centrosymmetrical anionic P6O18 ring via O—H⋯O hydrogen bonds. The centrosymmetric hydrogen-bonded rings formed by four oxonium cations and four phosphate anions can be described by an R 4 8(36) graph-set motif. The ring motifs are connected by hydrogen bonds into inorganic layers perpendicular to [100]. The 1-(2,3-di­methyl­phen­yl)piperazine-1,4-diium cations are located between the layers, compensating their negative charge and establishing N—H⋯O hydrogen bonds with the O atoms of the anionic framework.

Related literature  

For background to the chemistry of cyclo­hexa­phosphate, see: Durif (1995); Amri et al. (2008); Marouani et al. (2010). For applications of piperazine derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For related structures with cyclo­hexa­phosphate rings, see: Abid et al. (2011); Ameur et al. (2013); Amri et al. (2009). For related structures with 1-phenyl­piperazine-1,4-diium salts, see: Marouani et al. (2010); Ben Gharbia et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the synthesis of the precursor, see: Schülke & Kayser (1985). graphic file with name e-69-o1145-scheme1.jpg

Experimental  

Crystal data  

  • 2C12H20N2 2+·2H3O+·P6O18 6−·2H2O

  • M r = 932.50

  • Monoclinic, Inline graphic

  • a = 8.630 (6) Å

  • b = 14.495 (4) Å

  • c = 17.072 (3) Å

  • β = 114.93 (4)°

  • V = 1936.6 (15) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.60 × 0.40 × 0.10 mm

Data collection  

  • Nonius MACH-3 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983) T min = 0.892, T max = 0.981

  • 12060 measured reflections

  • 9442 independent reflections

  • 5475 reflections with I > 2σ(I)

  • R int = 0.031

  • 2 standard reflections every 120 min intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.152

  • S = 0.99

  • 9442 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813016759/jj2168sup1.cif

e-69-o1145-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016759/jj2168Isup2.hkl

e-69-o1145-Isup2.hkl (452.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H1W1⋯O9 0.79 1.84 2.614 (3) 166
OW1—H2W1⋯O2i 0.86 1.97 2.781 (3) 159
OW2—H1W2⋯O8 0.82 1.69 2.487 (2) 167
OW2—H2W2⋯OW1ii 0.80 1.77 2.503 (3) 152
OW2—H3W2⋯O6iii 0.85 1.64 2.481 (2) 178
N1—H1⋯O1 0.91 1.82 2.690 (2) 160
N2—H2A⋯O5iv 0.90 1.87 2.714 (2) 156
N2—H2B⋯O2v 0.90 2.10 2.858 (3) 142
N2—H2B⋯O5v 0.90 2.28 2.916 (3) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Tunisian Ministry of H. E. Sc. R. and the Deanship of Scientific Research at King Saud University (research group project No. RGP-VPP-089).

supplementary crystallographic information

Comment

The literature reports several cyclohexaphosphates of organic cations and/or inorganic cations (Durif,1995). However, cyclohexaphosphates of mixed cations associating the oxoniumion are still relatively very limited. Up to now, only two examples have been known and structurally characterized (Amri et al., 2008, Marouani et al.,2010). In this work, we report the preparation and the structural investigation of a new organic oxonium cyclohexaphospohate, 2(C12H20N2)2+.2H3O+.P6O186-. 2H2O, (I), where the organic species is the piperazinium group. Piperazine derivatives have wide range of applications in pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents.

The asymmetric unit of (I) includes one-half of the P6O18 ring lying on an inversion center (1/2, 1/2, 0), one 1-(2,3-dimethylphenyl) piperazine-1,4-diium cation, one hydronium cation and one water molecule (Fig.1). As shown in Fig.2, the hydronium cations (OW2) bridge the anionic ring to form 2-D corrugated layers, located at x = 1/2 and parallel to the bc-plane. The result of these interactions is the formation of a 36-membered ring with an R48(36) graph-set motif (Bernstein et al., 1995). The centre of 36-membered ring is situated on a crystallographic centre of symmetry. Inside these layers, the phosphoric rings display a chair conformation with geometrical characteristics that show no significant difference in deviation from those observed in other cyclohexaphosphates having the same internal symmetry -1 (Amri et al., 2009; Abid et al., 2011; Ameur et al., 2013). The anchorage of the water molecule OW1 and the organic cations is made by short and long H-bonds, ensuring the interconnection between layers, and thus giving rise to a three-dimensional network. The benzyl ring (C5—C10) is essentially planar with an r.m.s. deviation of 0.0047 Å and is orientated at an angle of 54.09 (5)° with respect to the piperazine ring (Fig.3). The piperazine (N1–N2/C1–C4) ring adopts a chair conformation [puckering parameters: QT = 0.577 (2) Å, θ = 0.7 (2)° and φ = 326 (12) (Cremer & Pople, 1975)] with atoms N1 and N2 deviating by -0.683 (2) and 0.657 (2) Å from the least-squares plane defined by the remaining atoms in the ring. The interatomic bond lengths (C—C,N—C) and angles in (C—C—C,C—N—C) do not show significant deviation from those reported in a related 1-phenylpiperazine-1,4-diium salt (Ben Gharbia et al., 2005). An extensive network of N—H···O and O—H···O hydrogen-bonding interactions link the components of the structure into a three-dimensional network (Fig. 3).

Experimental

Crystals of the title compound were prepared by adding dropwise an ethanolic solution (5 ml) of 1-(2,3)dimethlphenylpiperazine (4 mmol) to an aqueous solution (10 ml) of cyclohexaphosphoric acid (2 mmol). The reaction mixture was stirred at room temperature for few minutes. X-ray quality crystals of the title compound appeared after a few days. The cyclohexaphosphoric acid H6P6O18, was produced from Li6P6O18.6H2O, prepared according to the procedure of Schülke and Kayser (Schülke & Kayser, 1985), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement

H1W1, H1W2, H2W1, H2W2 and H3W2 were located by Fourier maps and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). All remaining H atoms were placed in their calculated positions and then refined using the riding model with atom-H lengths of 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), 0.91 Å (NH) and 0.90 Å (NH3). Uiso were set to 1.2 (CH, CH2), 1.5 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate O—H···O and N—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

Fig, 2. Projection along the a axis, of an inorganic layer in the structure of (I). The dashed circles highlight the R48(36) centrosymmetric motifs.

Fig. 3.

Fig. 3.

(a) The three-dimensional network of (I), projected along the aaxis. (b) Relative orientation of the rings aryl and piperazine in the 1-(2,3-Dimethylphenyl)piperazine-1,4-diium cation.

Crystal data

2C12H20N22+·2H3O+·P6O186·2H2O F(000) = 976
Mr = 932.50 Dx = 1.599 Mg m3
Monoclinic, P21/c Ag Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.630 (6) Å θ = 9.3–10.5°
b = 14.495 (4) Å µ = 0.20 mm1
c = 17.072 (3) Å T = 293 K
β = 114.93 (4)° Prism, colourless
V = 1936.6 (15) Å3 0.60 × 0.40 × 0.10 mm
Z = 2

Data collection

Nonius MACH-3 diffractometer 5475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 28.0°, θmin = 2.1°
non–profiled ω scans h = −14→14
Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) k = −24→2
Tmin = 0.892, Tmax = 0.981 l = −28→16
12060 measured reflections 2 standard reflections every 120 min
9442 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0763P)2] where P = (Fo2 + 2Fc2)/3
9442 reflections (Δ/σ)max < 0.001
253 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.67 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.31249 (5) 0.34945 (3) −0.07303 (3) 0.02004 (9)
P2 0.37416 (6) 0.39535 (3) 0.10432 (3) 0.02228 (10)
P3 0.69777 (6) 0.49655 (3) 0.18679 (3) 0.02396 (10)
O1 0.42651 (16) 0.30040 (10) −0.10364 (9) 0.0287 (3)
O2 0.14736 (17) 0.30794 (10) −0.08650 (11) 0.0345 (3)
O3 0.2778 (2) 0.45146 (10) −0.11034 (11) 0.0385 (4)
O4 0.42266 (17) 0.36921 (13) 0.02683 (9) 0.0403 (4)
O5 0.19648 (16) 0.42960 (10) 0.07175 (10) 0.0321 (3)
O6 0.4264 (2) 0.31760 (10) 0.16614 (10) 0.0351 (3)
O7 0.49427 (17) 0.48166 (9) 0.14480 (10) 0.0325 (3)
O8 0.7354 (2) 0.55904 (12) 0.26036 (10) 0.0448 (4)
O9 0.7852 (2) 0.40717 (10) 0.19877 (12) 0.0419 (4)
OW1 1.0380 (3) 0.2895 (2) 0.25912 (15) 0.0936 (10)
H1W1 0.9712 0.3308 0.2474 0.140*
H2W1 1.0790 0.2734 0.3123 0.140*
OW2 0.79099 (19) 0.72073 (11) 0.31371 (10) 0.0372 (3)
H1W2 0.7581 0.6706 0.2912 0.056*
H2W2 0.8182 0.7360 0.2764 0.056*
H3W2 0.7184 0.7547 0.3209 0.056*
C1 0.8112 (2) 0.37054 (13) 0.00581 (13) 0.0295 (4)
H1A 0.6935 0.3897 −0.0121 0.035*
H1B 0.8824 0.4074 0.0554 0.035*
C2 0.8290 (3) 0.26990 (14) 0.03063 (13) 0.0302 (4)
H2C 0.9484 0.2523 0.0532 0.036*
H2D 0.7907 0.2605 0.0759 0.036*
C3 0.7820 (3) 0.22745 (13) −0.11665 (13) 0.0282 (4)
H3A 0.7134 0.1904 −0.1667 0.034*
H3B 0.9005 0.2093 −0.0976 0.034*
C4 0.7625 (3) 0.32817 (13) −0.14143 (14) 0.0299 (4)
H4A 0.8012 0.3384 −0.1865 0.036*
H4B 0.6429 0.3454 −0.1640 0.036*
C5 0.7366 (2) 0.10980 (12) −0.02396 (12) 0.0258 (3)
C6 0.6060 (2) 0.05226 (13) −0.07716 (12) 0.0265 (3)
C7 0.6213 (3) −0.04254 (14) −0.05737 (14) 0.0335 (4)
C8 0.7617 (3) −0.07472 (15) 0.01414 (17) 0.0421 (5)
H8 0.7708 −0.1374 0.0270 0.051*
C9 0.8877 (3) −0.01554 (16) 0.06639 (17) 0.0433 (5)
H9 0.9801 −0.0383 0.1144 0.052*
C10 0.8771 (3) 0.07749 (16) 0.04755 (15) 0.0364 (5)
H10 0.9623 0.1178 0.0821 0.044*
C11 0.4528 (3) 0.08562 (15) −0.15409 (13) 0.0354 (4)
H13 0.4447 0.1515 −0.1513 0.053*
H11 0.3517 0.0578 −0.1544 0.053*
H14 0.4639 0.0690 −0.2059 0.053*
C12 0.4877 (4) −0.10878 (16) −0.11266 (19) 0.0477 (6)
H122 0.3770 −0.0866 −0.1210 0.072*
H121 0.5077 −0.1680 −0.0850 0.072*
H123 0.4924 −0.1144 −0.1676 0.072*
N1 0.72640 (18) 0.20991 (10) −0.04534 (10) 0.0227 (3)
H1 0.6150 0.2273 −0.0649 0.027*
N2 0.8629 (2) 0.38610 (11) −0.06582 (12) 0.0298 (3)
H2A 0.8476 0.4459 −0.0813 0.036*
H2B 0.9746 0.3729 −0.0475 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01473 (16) 0.02149 (19) 0.0252 (2) −0.00054 (15) 0.00971 (15) −0.00045 (17)
P2 0.02042 (19) 0.02102 (19) 0.0271 (2) −0.00034 (15) 0.01164 (17) −0.00057 (17)
P3 0.02164 (19) 0.02002 (19) 0.0283 (2) 0.00048 (16) 0.00867 (17) 0.00217 (17)
O1 0.0217 (6) 0.0296 (7) 0.0363 (7) 0.0055 (5) 0.0137 (5) −0.0021 (6)
O2 0.0221 (6) 0.0335 (7) 0.0522 (9) −0.0093 (5) 0.0197 (6) −0.0100 (7)
O3 0.0558 (10) 0.0228 (6) 0.0560 (10) 0.0102 (6) 0.0420 (8) 0.0084 (7)
O4 0.0196 (6) 0.0758 (12) 0.0257 (7) 0.0018 (7) 0.0099 (5) −0.0072 (8)
O5 0.0205 (6) 0.0297 (7) 0.0475 (8) 0.0007 (5) 0.0157 (6) −0.0001 (6)
O6 0.0388 (8) 0.0270 (7) 0.0420 (8) 0.0021 (6) 0.0195 (7) 0.0086 (6)
O7 0.0224 (6) 0.0209 (6) 0.0518 (9) −0.0013 (5) 0.0132 (6) −0.0039 (6)
O8 0.0574 (10) 0.0368 (9) 0.0331 (8) −0.0078 (8) 0.0122 (7) −0.0075 (7)
O9 0.0328 (8) 0.0290 (7) 0.0603 (10) 0.0119 (6) 0.0160 (7) 0.0105 (7)
OW1 0.0987 (18) 0.134 (2) 0.0705 (14) 0.0923 (17) 0.0579 (14) 0.0573 (15)
OW2 0.0349 (7) 0.0385 (8) 0.0389 (8) −0.0028 (6) 0.0162 (7) −0.0106 (7)
C1 0.0236 (8) 0.0264 (8) 0.0393 (10) −0.0026 (7) 0.0139 (8) −0.0055 (8)
C2 0.0283 (9) 0.0289 (9) 0.0304 (9) −0.0021 (7) 0.0093 (7) −0.0018 (8)
C3 0.0316 (9) 0.0249 (8) 0.0363 (10) 0.0015 (7) 0.0223 (8) 0.0021 (7)
C4 0.0297 (9) 0.0280 (9) 0.0369 (10) 0.0011 (7) 0.0188 (8) 0.0048 (8)
C5 0.0272 (8) 0.0216 (8) 0.0324 (9) 0.0038 (6) 0.0164 (7) 0.0035 (7)
C6 0.0323 (9) 0.0245 (8) 0.0299 (9) 0.0023 (7) 0.0200 (7) 0.0014 (7)
C7 0.0459 (11) 0.0222 (8) 0.0442 (11) 0.0000 (8) 0.0305 (10) −0.0008 (8)
C8 0.0526 (14) 0.0252 (9) 0.0598 (15) 0.0097 (9) 0.0346 (12) 0.0128 (10)
C9 0.0426 (12) 0.0339 (11) 0.0497 (13) 0.0126 (9) 0.0158 (10) 0.0146 (10)
C10 0.0310 (10) 0.0325 (10) 0.0413 (11) 0.0075 (8) 0.0110 (9) 0.0076 (9)
C11 0.0364 (10) 0.0329 (10) 0.0335 (10) −0.0052 (8) 0.0115 (8) −0.0028 (8)
C12 0.0568 (15) 0.0290 (10) 0.0662 (17) −0.0098 (10) 0.0346 (13) −0.0116 (11)
N1 0.0199 (6) 0.0212 (6) 0.0289 (7) 0.0015 (5) 0.0120 (6) 0.0014 (6)
N2 0.0210 (6) 0.0226 (7) 0.0483 (10) 0.0014 (6) 0.0170 (7) 0.0031 (7)

Geometric parameters (Å, º)

P1—O2 1.4729 (16) C3—H3A 0.9700
P1—O1 1.4766 (15) C3—H3B 0.9700
P1—O3 1.5878 (15) C4—N2 1.476 (3)
P1—O4 1.5894 (16) C4—H4A 0.9700
P2—O6 1.4785 (15) C4—H4B 0.9700
P2—O5 1.4792 (17) C5—C6 1.388 (3)
P2—O7 1.5855 (15) C5—C10 1.390 (3)
P2—O4 1.5924 (15) C5—N1 1.490 (2)
P3—O8 1.4696 (17) C6—C7 1.408 (3)
P3—O9 1.4696 (15) C6—C11 1.497 (3)
P3—O3i 1.5964 (15) C7—C8 1.389 (3)
P3—O7 1.6073 (19) C7—C12 1.491 (3)
O3—P3i 1.5964 (15) C8—C9 1.377 (4)
OW1—H1W1 0.7950 C8—H8 0.9300
OW1—H2W1 0.8565 C9—C10 1.380 (3)
OW2—H1W2 0.8154 C9—H9 0.9300
OW2—H2W2 0.7977 C10—H10 0.9300
OW2—H3W2 0.8458 C11—H13 0.9600
C1—N2 1.485 (3) C11—H11 0.9600
C1—C2 1.509 (3) C11—H14 0.9600
C1—H1A 0.9700 C12—H122 0.9600
C1—H1B 0.9700 C12—H121 0.9600
C2—N1 1.501 (2) C12—H123 0.9600
C2—H2C 0.9700 N1—H1 0.9100
C2—H2D 0.9700 N2—H2A 0.9000
C3—N1 1.506 (2) N2—H2B 0.9000
C3—C4 1.509 (3)
O2—P1—O1 119.56 (9) N2—C4—H4B 109.6
O2—P1—O3 108.13 (9) C3—C4—H4B 109.6
O1—P1—O3 110.35 (8) H4A—C4—H4B 108.1
O2—P1—O4 110.06 (9) C6—C5—C10 122.63 (18)
O1—P1—O4 106.25 (9) C6—C5—N1 118.49 (16)
O3—P1—O4 100.89 (10) C10—C5—N1 118.88 (17)
O6—P2—O5 118.69 (9) C5—C6—C7 117.46 (18)
O6—P2—O7 110.10 (9) C5—C6—C11 123.56 (17)
O5—P2—O7 106.42 (9) C7—C6—C11 118.97 (18)
O6—P2—O4 107.69 (10) C8—C7—C6 119.8 (2)
O5—P2—O4 111.19 (9) C8—C7—C12 119.7 (2)
O7—P2—O4 101.38 (9) C6—C7—C12 120.5 (2)
O8—P3—O9 120.58 (11) C9—C8—C7 121.2 (2)
O8—P3—O3i 110.49 (10) C9—C8—H8 119.4
O9—P3—O3i 107.03 (9) C7—C8—H8 119.4
O8—P3—O7 105.68 (10) C8—C9—C10 120.0 (2)
O9—P3—O7 110.14 (9) C8—C9—H9 120.0
O3i—P3—O7 101.25 (9) C10—C9—H9 120.0
P1—O3—P3i 134.42 (10) C9—C10—C5 118.8 (2)
P1—O4—P2 133.32 (10) C9—C10—H10 120.6
P2—O7—P3 133.71 (9) C5—C10—H10 120.6
H1W1—OW1—H2W1 113.9 C6—C11—H13 109.5
H1W2—OW2—H2W2 91.8 C6—C11—H11 109.5
H1W2—OW2—H3W2 117.1 H13—C11—H11 109.5
H2W2—OW2—H3W2 116.2 C6—C11—H14 109.5
N2—C1—C2 110.34 (16) H13—C11—H14 109.5
N2—C1—H1A 109.6 H11—C11—H14 109.5
C2—C1—H1A 109.6 C7—C12—H122 109.5
N2—C1—H1B 109.6 C7—C12—H121 109.5
C2—C1—H1B 109.6 H122—C12—H121 109.5
H1A—C1—H1B 108.1 C7—C12—H123 109.5
N1—C2—C1 111.36 (16) H122—C12—H123 109.5
N1—C2—H2C 109.4 H121—C12—H123 109.5
C1—C2—H2C 109.4 C5—N1—C2 113.59 (15)
N1—C2—H2D 109.4 C5—N1—C3 110.88 (14)
C1—C2—H2D 109.4 C2—N1—C3 109.11 (14)
H2C—C2—H2D 108.0 C5—N1—H1 107.7
N1—C3—C4 110.72 (15) C2—N1—H1 107.7
N1—C3—H3A 109.5 C3—N1—H1 107.7
C4—C3—H3A 109.5 C4—N2—C1 111.35 (15)
N1—C3—H3B 109.5 C4—N2—H2A 109.4
C4—C3—H3B 109.5 C1—N2—H2A 109.4
H3A—C3—H3B 108.1 C4—N2—H2B 109.4
N2—C4—C3 110.49 (16) C1—N2—H2B 109.4
N2—C4—H4A 109.6 H2A—N2—H2B 108.0
C3—C4—H4A 109.6
O2—P1—O3—P3i −116.25 (16) C5—C6—C7—C8 1.2 (3)
O1—P1—O3—P3i 16.22 (19) C11—C6—C7—C8 −179.47 (19)
O4—P1—O3—P3i 128.25 (16) C5—C6—C7—C12 −178.77 (18)
O2—P1—O4—P2 −31.2 (2) C11—C6—C7—C12 0.6 (3)
O1—P1—O4—P2 −162.03 (16) C6—C7—C8—C9 −0.2 (3)
O3—P1—O4—P2 82.82 (18) C12—C7—C8—C9 179.7 (2)
O6—P2—O4—P1 114.23 (17) C7—C8—C9—C10 −0.8 (4)
O5—P2—O4—P1 −17.4 (2) C8—C9—C10—C5 0.8 (4)
O7—P2—O4—P1 −130.16 (17) C6—C5—C10—C9 0.2 (3)
O6—P2—O7—P3 53.82 (17) N1—C5—C10—C9 −178.9 (2)
O5—P2—O7—P3 −176.32 (13) C6—C5—N1—C2 157.24 (16)
O4—P2—O7—P3 −59.98 (16) C10—C5—N1—C2 −23.6 (2)
O8—P3—O7—P2 −140.97 (14) C6—C5—N1—C3 −79.5 (2)
O9—P3—O7—P2 −9.23 (18) C10—C5—N1—C3 99.7 (2)
O3i—P3—O7—P2 103.78 (15) C1—C2—N1—C5 −178.79 (15)
N2—C1—C2—N1 −56.9 (2) C1—C2—N1—C3 57.0 (2)
N1—C3—C4—N2 58.0 (2) C4—C3—N1—C5 176.94 (15)
C10—C5—C6—C7 −1.2 (3) C4—C3—N1—C2 −57.2 (2)
N1—C5—C6—C7 177.91 (16) C3—C4—N2—C1 −57.5 (2)
C10—C5—C6—C11 179.48 (19) C2—C1—N2—C4 56.8 (2)
N1—C5—C6—C11 −1.4 (3)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW1—H1W1···O9 0.79 1.84 2.614 (3) 166
OW1—H2W1···O2ii 0.86 1.97 2.781 (3) 159
OW2—H1W2···O8 0.82 1.69 2.487 (2) 167
OW2—H2W2···OW1iii 0.80 1.77 2.503 (3) 152
OW2—H3W2···O6iv 0.85 1.64 2.481 (2) 178
N1—H1···O1 0.91 1.82 2.690 (2) 160
N2—H2A···O5i 0.90 1.87 2.714 (2) 156
N2—H2B···O2v 0.90 2.10 2.858 (3) 142
N2—H2B···O5v 0.90 2.28 2.916 (3) 127

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, −y+1/2, z+1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2168).

References

  1. Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1549–m1550. [DOI] [PMC free article] [PubMed]
  2. Ameur, I., Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, m305–m306. [DOI] [PMC free article] [PubMed]
  3. Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1996–2005.
  4. Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. [DOI] [PMC free article] [PubMed]
  5. Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. 220, 333–334.
  6. Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  7. Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546. [DOI] [PubMed]
  8. Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058. [DOI] [PubMed]
  9. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  10. Durif, A. (1995). In Crystal Chemistry of Condensed Phosphates New York and London: Plenum Press.
  11. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  12. Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383. [DOI] [PubMed]
  13. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  14. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  15. Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264. [DOI] [PubMed]
  16. Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613. [DOI] [PMC free article] [PubMed]
  17. Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248. [DOI] [PubMed]
  20. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813016759/jj2168sup1.cif

e-69-o1145-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813016759/jj2168Isup2.hkl

e-69-o1145-Isup2.hkl (452.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES