Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 29;69(Pt 7):o1175–o1176. doi: 10.1107/S1600536813017261

(E)-1-[2-(2-Cyano­phen­yl)diazen-2-ium-1-yl]naphthalen-2-olate

Hassiba Bougueria a,*, Mohamed Amine Benaouida a, Sofiane Bouacida a, Abd el kader Bouchoul a
PMCID: PMC3770433  PMID: 24046718

Abstract

There are two independent zwitterion mol­ecules (A and B) in the asymmetric unit of the title compound, C17H11N3O, which belongs to the family of azo dyes. The dihedral angle between the benzene ring and the naphthalene ring system is 6.99 (6)° in mol­ecule A and 4.38 (6)° in mol­ecule B. The azo group adopts an E conformation with respect to the –N=N– bond and each of the independent mol­ecules has an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming ribbons propagating along [-110]. The ribbons are linked via π–π inter­actions involving the benzene and naphthalene rings of inversion-related A and inversion-related B mol­ecules, forming a three-dimensional structure. The most significant centroid–centroid distances vary from 3.6599 (6) to 3.7538 (9) Å.

Related literature  

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003). For a related structure, see: Rãdulescu et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-o1175-scheme1.jpg

Experimental  

Crystal data  

  • C17H11N3O

  • M r = 273.29

  • Triclinic, Inline graphic

  • a = 7.1296 (3) Å

  • b = 12.9532 (7) Å

  • c = 15.6181 (8) Å

  • α = 111.562 (2)°

  • β = 90.536 (2)°

  • γ = 100.779 (2)°

  • V = 1312.92 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.55 × 0.11 × 0.08 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.910, T max = 0.993

  • 18729 measured reflections

  • 6021 independent reflections

  • 3859 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.120

  • S = 1.06

  • 6021 reflections

  • 387 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017261/su2616sup1.cif

e-69-o1175-sup1.cif (35.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017261/su2616Isup2.hkl

e-69-o1175-Isup2.hkl (294.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017261/su2616Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.92 (1) 1.80 (2) 2.5380 (16) 136 (2)
N5—H5⋯O2 0.90 (1) 1.72 (2) 2.5277 (17) 147 (2)
C21—H21⋯N3i 0.93 2.61 3.509 (2) 162
C30—H30⋯N3ii 0.93 2.60 3.487 (2) 159
C32—H32⋯O1iii 0.93 2.49 3.1994 (18) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank all researchers of the CHEMS Research Unit of the University of Constantine, Algeria, for the valuable assistance they have provided us throughout the realisation of this work. We also express our gratitude and thank Mr. L Ouahab, Director of Research at laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for his valuable collaboration in the recording and inter­pretation of the XRD data.

supplementary crystallographic information

Comment

Azo dno's (dyes and pigments) are by far the most important class of dno's, accounting for over 50% of all commercial dno's, and having been studied more than any other class of dye. Azo dno's contain at least one azo group (–N=N–) but can contain two (diazo), three (triazo), or more but rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups of which at least one, but more usually both, are aromatic. They exist in the trans form in which the band angle vis. 120°; the nitrogen atoms are sp2 hybridized. Almost without exception, azo dno's are made by diazotization of a primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-rich nucleophile (Wang et al., 2003). We report herein on the crystal structure of the title compound, obtained through the diazotization of 2-cyanoaniline followed by a coupling reaction with 2-naphthol.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains two independent molecules (A and B) with no significant differences in their structures. The bond distances (Allen et al., 1987) and bond angles in the two molecules are normal and similar to those in a related compound (Rãdulescu et al., 2006). Interestingly, the hydrogen atom of the OH group has been transfered to the N atom in the azo group to form a zwitterion, and in each of the independent molecules there is an intramolecular N—H···O hydrogen bond (Table 1). The molecules are relatively planar with the dihedral angle between the benzene ring and naphthalene ring system being 6.99 (6) ° in A and 4.38 (6) ° in B. Both molecules have an E conformation with respect to azo bridge (Fig. 1). The C1-N1-N2-C11 torsion angle is -175.64 (12) ° in A and the C18–N4–N5–C28 torsion angle is-177.81 (13)° in B, confirming the trans conformation of the C atom with respect to hydrazine N atom.

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons propagating along [-110]; see Table 1 and Fig. 2. The ribbons are linked via π-π interactions involving the benzene and naphthalene rings of inversion related A and inversion related B molecules. The most significant centroid-to-centroid distances are Cg1···Cg3i and Cg2···Cg3i = 3.6636 (9) and 3.7538 (9) Å, respectively, for the A molecules, and Cg5···Cg7ii and Cg6···Cg7ii = 3.6599 (6) and 3.6610 (9) Å, respectively, for the B molecules [Cg1, Cg2, Cg3, Cg5, Cg6 and Cg7 are the centroids of the C1-C5/C10, C5-C10, C11-C16, C18-C22/C27, C22-C27 and C28-C30 rings, respectively; symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1].

Experimental

The title compound was obtained through the diazotization of 2-cyanoaniline followed by a coupling reaction with 2-naphthol, according to the literature procedure used to synthesize other aromatic azo-compounds (Wang et al., 2003). Orange rod-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in H2O/THF (1/1 v/v).

Refinement

The NH H atoms were located in a difference Fourier map and refined with distance restraints [N-H = 0.89 (1) Å]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).

Crystal data

C17H11N3O Z = 4
Mr = 273.29 F(000) = 568
Triclinic, P1 Dx = 1.383 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.1296 (3) Å Cell parameters from 4069 reflections
b = 12.9532 (7) Å θ = 2.7–27.2°
c = 15.6181 (8) Å µ = 0.09 mm1
α = 111.562 (2)° T = 150 K
β = 90.536 (2)° Rod, orange
γ = 100.779 (2)° 0.55 × 0.11 × 0.08 mm
V = 1312.92 (11) Å3

Data collection

Bruker APEXII diffractometer 6021 independent reflections
Radiation source: fine-focus sealed tube 3859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
CCD rotation images, thin slices scans θmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −9→8
Tmin = 0.910, Tmax = 0.993 k = −15→16
18729 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2] where P = (Fo2 + 2Fc2)/3
6021 reflections (Δ/σ)max < 0.001
387 parameters Δρmax = 0.20 e Å3
2 restraints Δρmin = −0.23 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22974 (15) −0.08495 (9) −0.19945 (7) 0.0353 (4)
N1 0.26603 (15) −0.03201 (9) −0.00509 (8) 0.0228 (4)
N2 0.28634 (16) −0.13393 (10) −0.05950 (8) 0.0240 (4)
N3 0.2868 (2) −0.37222 (11) −0.25733 (9) 0.0395 (5)
C1 0.22947 (18) 0.03886 (11) −0.04340 (9) 0.0214 (4)
C2 0.2066 (2) 0.00985 (13) −0.14333 (10) 0.0273 (5)
C3 0.1577 (2) 0.09342 (13) −0.17514 (10) 0.0322 (5)
C4 0.1391 (2) 0.19509 (13) −0.11610 (10) 0.0323 (5)
C5 0.16559 (19) 0.22862 (12) −0.01740 (10) 0.0258 (5)
C6 0.1453 (2) 0.33609 (13) 0.04241 (11) 0.0323 (5)
C7 0.1666 (2) 0.36735 (13) 0.13627 (11) 0.0343 (5)
C8 0.2071 (2) 0.29038 (13) 0.17290 (10) 0.0318 (5)
C9 0.2267 (2) 0.18361 (12) 0.11562 (10) 0.0265 (5)
C10 0.20812 (18) 0.15051 (11) 0.01973 (9) 0.0221 (4)
C11 0.31180 (18) −0.21245 (11) −0.02079 (9) 0.0221 (4)
C12 0.31961 (19) −0.32258 (12) −0.08066 (9) 0.0246 (4)
C13 0.3380 (2) −0.40431 (12) −0.04526 (10) 0.0307 (5)
C14 0.3500 (2) −0.37679 (13) 0.04877 (11) 0.0336 (5)
C15 0.3436 (2) −0.26761 (12) 0.10790 (10) 0.0302 (5)
C16 0.32483 (19) −0.18560 (12) 0.07411 (9) 0.0252 (4)
C17 0.3020 (2) −0.35134 (12) −0.17923 (11) 0.0287 (5)
O2 0.25056 (17) −0.07164 (10) 0.29923 (7) 0.0412 (4)
N4 0.23605 (16) −0.01608 (10) 0.49355 (8) 0.0263 (4)
N5 0.15976 (18) −0.12048 (10) 0.43789 (8) 0.0287 (4)
N6 −0.0106 (2) −0.36198 (11) 0.23897 (9) 0.0409 (5)
C18 0.3133 (2) 0.05720 (12) 0.45560 (10) 0.0259 (5)
C19 0.3193 (2) 0.02819 (14) 0.35679 (10) 0.0320 (5)
C20 0.4066 (2) 0.11518 (15) 0.32526 (11) 0.0381 (6)
C21 0.4765 (2) 0.22096 (15) 0.38446 (11) 0.0391 (6)
C22 0.4725 (2) 0.25414 (13) 0.48296 (11) 0.0317 (5)
C23 0.5459 (2) 0.36558 (14) 0.54297 (13) 0.0426 (6)
C24 0.5446 (2) 0.39650 (14) 0.63640 (13) 0.0428 (6)
C25 0.4710 (2) 0.31589 (14) 0.67273 (11) 0.0391 (6)
C26 0.3963 (2) 0.20554 (13) 0.61554 (10) 0.0319 (5)
C27 0.3940 (2) 0.17243 (12) 0.51944 (10) 0.0272 (5)
C28 0.0844 (2) −0.19913 (12) 0.47635 (10) 0.0257 (5)
C29 −0.0006 (2) −0.30904 (12) 0.41620 (9) 0.0275 (5)
C30 −0.0778 (2) −0.39107 (13) 0.45099 (10) 0.0319 (5)
C31 −0.0682 (2) −0.36403 (13) 0.54521 (10) 0.0338 (5)
C32 0.0176 (2) −0.25528 (13) 0.60442 (10) 0.0328 (5)
C33 0.0925 (2) −0.17330 (13) 0.57078 (10) 0.0292 (5)
C34 −0.0066 (2) −0.33815 (12) 0.31768 (11) 0.0314 (5)
H2 0.272 (2) −0.1545 (14) −0.1223 (6) 0.052 (5)*
H3 0.13860 0.07610 −0.23830 0.0390*
H4 0.10770 0.24650 −0.13970 0.0390*
H6 0.11680 0.38740 0.01790 0.0390*
H7 0.15390 0.43950 0.17520 0.0410*
H8 0.22120 0.31110 0.23660 0.0380*
H9 0.25270 0.13280 0.14120 0.0320*
H13 0.34210 −0.47760 −0.08500 0.0370*
H14 0.36250 −0.43140 0.07260 0.0400*
H15 0.35200 −0.24960 0.17140 0.0360*
H16 0.32090 −0.11260 0.11450 0.0300*
H5 0.171 (3) −0.1310 (16) 0.3780 (7) 0.075 (7)*
H20 0.41490 0.09770 0.26230 0.0460*
H21 0.52990 0.27530 0.36110 0.0470*
H23 0.59660 0.41960 0.51880 0.0510*
H24 0.59290 0.47120 0.67550 0.0510*
H25 0.47210 0.33670 0.73640 0.0470*
H26 0.34690 0.15250 0.64090 0.0380*
H30 −0.13560 −0.46380 0.41090 0.0380*
H31 −0.11910 −0.41850 0.56890 0.0410*
H32 0.02470 −0.23750 0.66790 0.0390*
H33 0.14840 −0.10060 0.61140 0.0350*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0424 (7) 0.0354 (7) 0.0234 (6) 0.0079 (5) 0.0014 (5) 0.0058 (5)
N1 0.0197 (6) 0.0200 (7) 0.0252 (7) 0.0027 (5) 0.0010 (5) 0.0052 (5)
N2 0.0251 (6) 0.0214 (7) 0.0227 (7) 0.0043 (5) 0.0006 (5) 0.0054 (6)
N3 0.0474 (9) 0.0325 (8) 0.0325 (8) 0.0039 (7) 0.0031 (6) 0.0074 (7)
C1 0.0166 (7) 0.0232 (8) 0.0238 (8) 0.0011 (6) −0.0008 (6) 0.0095 (7)
C2 0.0234 (7) 0.0285 (9) 0.0265 (9) 0.0016 (6) 0.0009 (6) 0.0083 (7)
C3 0.0324 (8) 0.0399 (10) 0.0267 (9) 0.0072 (7) −0.0018 (7) 0.0155 (8)
C4 0.0282 (8) 0.0364 (10) 0.0379 (10) 0.0053 (7) −0.0016 (7) 0.0210 (8)
C5 0.0178 (7) 0.0281 (9) 0.0328 (9) 0.0029 (6) −0.0002 (6) 0.0139 (7)
C6 0.0252 (8) 0.0265 (9) 0.0484 (11) 0.0055 (7) 0.0010 (7) 0.0177 (8)
C7 0.0278 (8) 0.0248 (9) 0.0456 (10) 0.0060 (7) 0.0062 (7) 0.0075 (8)
C8 0.0301 (8) 0.0303 (9) 0.0298 (9) 0.0030 (7) 0.0054 (7) 0.0069 (7)
C9 0.0261 (8) 0.0243 (8) 0.0291 (9) 0.0038 (6) 0.0027 (6) 0.0108 (7)
C10 0.0153 (7) 0.0219 (8) 0.0273 (8) 0.0008 (6) 0.0004 (6) 0.0088 (6)
C11 0.0181 (7) 0.0211 (8) 0.0259 (8) 0.0028 (6) 0.0017 (6) 0.0080 (6)
C12 0.0219 (7) 0.0220 (8) 0.0269 (8) 0.0028 (6) 0.0017 (6) 0.0065 (7)
C13 0.0300 (8) 0.0220 (8) 0.0363 (9) 0.0050 (7) 0.0018 (7) 0.0067 (7)
C14 0.0347 (9) 0.0284 (9) 0.0433 (10) 0.0074 (7) 0.0013 (7) 0.0195 (8)
C15 0.0311 (8) 0.0323 (9) 0.0282 (9) 0.0062 (7) 0.0013 (7) 0.0126 (7)
C16 0.0245 (7) 0.0232 (8) 0.0252 (8) 0.0044 (6) 0.0017 (6) 0.0062 (7)
C17 0.0284 (8) 0.0205 (8) 0.0320 (10) 0.0025 (6) 0.0037 (7) 0.0050 (7)
O2 0.0551 (8) 0.0418 (7) 0.0233 (6) 0.0147 (6) 0.0010 (5) 0.0060 (5)
N4 0.0251 (6) 0.0258 (7) 0.0259 (7) 0.0089 (6) −0.0009 (5) 0.0057 (6)
N5 0.0338 (7) 0.0263 (8) 0.0235 (7) 0.0094 (6) −0.0001 (6) 0.0051 (6)
N6 0.0539 (9) 0.0338 (8) 0.0313 (8) 0.0092 (7) 0.0007 (7) 0.0080 (7)
C18 0.0229 (7) 0.0304 (9) 0.0253 (8) 0.0099 (7) 0.0005 (6) 0.0094 (7)
C19 0.0297 (8) 0.0395 (10) 0.0279 (9) 0.0149 (7) 0.0015 (7) 0.0101 (8)
C20 0.0339 (9) 0.0548 (12) 0.0313 (9) 0.0139 (8) 0.0054 (7) 0.0205 (9)
C21 0.0290 (9) 0.0493 (11) 0.0477 (11) 0.0067 (8) 0.0043 (7) 0.0287 (9)
C22 0.0209 (7) 0.0348 (10) 0.0395 (10) 0.0049 (7) −0.0011 (7) 0.0145 (8)
C23 0.0281 (9) 0.0403 (11) 0.0610 (13) 0.0001 (8) −0.0067 (8) 0.0245 (10)
C24 0.0346 (9) 0.0293 (10) 0.0554 (12) 0.0027 (8) −0.0123 (8) 0.0077 (9)
C25 0.0367 (9) 0.0383 (11) 0.0342 (10) 0.0112 (8) −0.0100 (7) 0.0029 (8)
C26 0.0312 (8) 0.0320 (10) 0.0306 (9) 0.0096 (7) −0.0025 (7) 0.0082 (8)
C27 0.0206 (7) 0.0299 (9) 0.0305 (9) 0.0093 (7) −0.0009 (6) 0.0086 (7)
C28 0.0249 (8) 0.0266 (9) 0.0264 (8) 0.0109 (7) −0.0003 (6) 0.0084 (7)
C29 0.0287 (8) 0.0285 (9) 0.0233 (8) 0.0117 (7) −0.0031 (6) 0.0047 (7)
C30 0.0314 (8) 0.0253 (9) 0.0339 (9) 0.0063 (7) −0.0050 (7) 0.0054 (7)
C31 0.0349 (9) 0.0308 (9) 0.0353 (10) 0.0040 (7) −0.0028 (7) 0.0133 (8)
C32 0.0323 (9) 0.0379 (10) 0.0270 (9) 0.0068 (7) −0.0018 (7) 0.0113 (8)
C33 0.0287 (8) 0.0259 (9) 0.0282 (9) 0.0066 (7) −0.0031 (6) 0.0042 (7)
C34 0.0347 (9) 0.0244 (9) 0.0329 (10) 0.0096 (7) −0.0023 (7) 0.0066 (7)

Geometric parameters (Å, º)

O1—C2 1.261 (2) C8—H8 0.9300
O2—C19 1.273 (2) C9—H9 0.9300
N1—N2 1.3173 (17) C13—H13 0.9300
N1—C1 1.3263 (19) C14—H14 0.9300
N2—C11 1.397 (2) C15—H15 0.9300
N3—C17 1.148 (2) C16—H16 0.9300
N2—H2 0.916 (9) C18—C27 1.459 (2)
N4—N5 1.3162 (18) C18—C19 1.451 (2)
N4—C18 1.334 (2) C19—C20 1.432 (3)
N5—C28 1.392 (2) C20—C21 1.336 (3)
N6—C34 1.151 (2) C21—C22 1.439 (2)
N5—H5 0.901 (12) C22—C27 1.409 (2)
C1—C10 1.457 (2) C22—C23 1.396 (3)
C1—C2 1.465 (2) C23—C24 1.365 (3)
C2—C3 1.440 (2) C24—C25 1.387 (3)
C3—C4 1.333 (2) C25—C26 1.376 (2)
C4—C5 1.440 (2) C26—C27 1.400 (2)
C5—C6 1.398 (2) C28—C33 1.385 (2)
C5—C10 1.412 (2) C28—C29 1.400 (2)
C6—C7 1.368 (2) C29—C30 1.392 (2)
C7—C8 1.389 (2) C29—C34 1.442 (2)
C8—C9 1.378 (2) C30—C31 1.380 (2)
C9—C10 1.396 (2) C31—C32 1.387 (2)
C11—C16 1.3903 (19) C32—C33 1.376 (2)
C11—C12 1.401 (2) C20—H20 0.9300
C12—C13 1.387 (2) C21—H21 0.9300
C12—C17 1.443 (2) C23—H23 0.9300
C13—C14 1.376 (2) C24—H24 0.9300
C14—C15 1.386 (2) C25—H25 0.9300
C15—C16 1.374 (2) C26—H26 0.9300
C3—H3 0.9300 C30—H30 0.9300
C4—H4 0.9300 C31—H31 0.9300
C6—H6 0.9300 C32—H32 0.9300
C7—H7 0.9300 C33—H33 0.9300
N2—N1—C1 118.56 (12) C14—C15—H15 119.00
N1—N2—C11 119.42 (11) C16—C15—H15 120.00
C11—N2—H2 120.8 (11) C11—C16—H16 120.00
N1—N2—H2 119.5 (11) C15—C16—H16 120.00
N5—N4—C18 117.91 (12) C19—C18—C27 119.88 (14)
N4—N5—C28 118.70 (12) N4—C18—C27 116.30 (13)
N4—N5—H5 112.2 (13) N4—C18—C19 123.82 (14)
C28—N5—H5 129.0 (13) O2—C19—C18 121.45 (16)
N1—C1—C10 116.45 (12) O2—C19—C20 120.47 (14)
C2—C1—C10 119.75 (13) C18—C19—C20 118.08 (15)
N1—C1—C2 123.79 (13) C19—C20—C21 121.38 (15)
O1—C2—C1 121.04 (14) C20—C21—C22 122.62 (17)
O1—C2—C3 121.26 (13) C21—C22—C27 119.33 (15)
C1—C2—C3 117.70 (14) C23—C22—C27 119.46 (15)
C2—C3—C4 121.48 (14) C21—C22—C23 121.21 (16)
C3—C4—C5 122.80 (15) C22—C23—C24 121.13 (17)
C6—C5—C10 119.37 (13) C23—C24—C25 119.63 (17)
C4—C5—C6 121.21 (15) C24—C25—C26 120.72 (15)
C4—C5—C10 119.40 (14) C25—C26—C27 120.53 (16)
C5—C6—C7 121.32 (16) C22—C27—C26 118.51 (15)
C6—C7—C8 119.39 (15) C18—C27—C26 122.81 (15)
C7—C8—C9 120.57 (14) C18—C27—C22 118.67 (13)
C8—C9—C10 120.99 (14) N5—C28—C29 117.98 (13)
C1—C10—C9 122.83 (13) N5—C28—C33 122.77 (14)
C5—C10—C9 118.36 (13) C29—C28—C33 119.25 (15)
C1—C10—C5 118.81 (12) C28—C29—C30 120.34 (13)
N2—C11—C12 118.15 (12) C30—C29—C34 119.64 (14)
N2—C11—C16 122.33 (13) C28—C29—C34 120.02 (14)
C12—C11—C16 119.50 (14) C29—C30—C31 119.69 (15)
C11—C12—C17 119.62 (14) C30—C31—C32 119.71 (16)
C13—C12—C17 120.29 (14) C31—C32—C33 121.05 (14)
C11—C12—C13 120.06 (12) C28—C33—C32 119.96 (15)
C12—C13—C14 119.88 (14) N6—C34—C29 179.50 (17)
C13—C14—C15 119.98 (16) C19—C20—H20 119.00
C14—C15—C16 120.98 (14) C21—C20—H20 119.00
C11—C16—C15 119.60 (14) C20—C21—H21 119.00
N3—C17—C12 178.63 (17) C22—C21—H21 119.00
C4—C3—H3 119.00 C22—C23—H23 119.00
C2—C3—H3 119.00 C24—C23—H23 119.00
C5—C4—H4 119.00 C23—C24—H24 120.00
C3—C4—H4 119.00 C25—C24—H24 120.00
C5—C6—H6 119.00 C24—C25—H25 120.00
C7—C6—H6 119.00 C26—C25—H25 120.00
C6—C7—H7 120.00 C25—C26—H26 120.00
C8—C7—H7 120.00 C27—C26—H26 120.00
C9—C8—H8 120.00 C29—C30—H30 120.00
C7—C8—H8 120.00 C31—C30—H30 120.00
C10—C9—H9 119.00 C30—C31—H31 120.00
C8—C9—H9 120.00 C32—C31—H31 120.00
C12—C13—H13 120.00 C31—C32—H32 119.00
C14—C13—H13 120.00 C33—C32—H32 119.00
C13—C14—H14 120.00 C28—C33—H33 120.00
C15—C14—H14 120.00 C32—C33—H33 120.00
C1—N1—N2—C11 −175.64 (12) C11—C12—C13—C14 −0.5 (2)
N2—N1—C1—C2 1.2 (2) C17—C12—C13—C14 −178.41 (14)
N2—N1—C1—C10 179.96 (12) C12—C13—C14—C15 0.0 (2)
N1—N2—C11—C12 175.62 (12) C13—C14—C15—C16 0.2 (2)
N1—N2—C11—C16 −2.8 (2) C14—C15—C16—C11 0.1 (2)
N5—N4—C18—C27 179.18 (13) N4—C18—C19—O2 −0.5 (2)
C18—N4—N5—C28 177.81 (13) N4—C18—C19—C20 180.00 (15)
N5—N4—C18—C19 −0.5 (2) C27—C18—C19—O2 179.83 (14)
N4—N5—C28—C29 178.40 (13) C27—C18—C19—C20 0.3 (2)
N4—N5—C28—C33 −2.4 (2) N4—C18—C27—C22 −178.20 (13)
C10—C1—C2—O1 177.94 (13) N4—C18—C27—C26 1.6 (2)
C10—C1—C2—C3 −1.8 (2) C19—C18—C27—C22 1.5 (2)
N1—C1—C2—O1 −3.3 (2) C19—C18—C27—C26 −178.72 (14)
N1—C1—C2—C3 176.96 (13) O2—C19—C20—C21 178.79 (15)
C2—C1—C10—C9 179.57 (13) C18—C19—C20—C21 −1.7 (2)
N1—C1—C10—C5 −178.85 (12) C19—C20—C21—C22 1.2 (2)
N1—C1—C10—C9 0.7 (2) C20—C21—C22—C23 −179.67 (15)
C2—C1—C10—C5 0.0 (2) C20—C21—C22—C27 0.7 (2)
O1—C2—C3—C4 −177.83 (15) C21—C22—C23—C24 −179.01 (14)
C1—C2—C3—C4 1.9 (2) C27—C22—C23—C24 0.6 (2)
C2—C3—C4—C5 −0.2 (2) C21—C22—C27—C18 −2.0 (2)
C3—C4—C5—C10 −1.8 (2) C21—C22—C27—C26 178.21 (14)
C3—C4—C5—C6 179.86 (15) C23—C22—C27—C18 178.35 (14)
C6—C5—C10—C9 0.6 (2) C23—C22—C27—C26 −1.4 (2)
C4—C5—C10—C1 1.8 (2) C22—C23—C24—C25 0.7 (2)
C4—C5—C6—C7 178.66 (14) C23—C24—C25—C26 −1.1 (2)
C10—C5—C6—C7 0.3 (2) C24—C25—C26—C27 0.3 (2)
C4—C5—C10—C9 −177.84 (13) C25—C26—C27—C18 −178.79 (14)
C6—C5—C10—C1 −179.82 (13) C25—C26—C27—C22 1.0 (2)
C5—C6—C7—C8 −0.7 (2) N5—C28—C29—C30 179.85 (13)
C6—C7—C8—C9 0.3 (2) N5—C28—C29—C34 0.6 (2)
C7—C8—C9—C10 0.6 (2) C33—C28—C29—C30 0.7 (2)
C8—C9—C10—C1 179.42 (14) C33—C28—C29—C34 −178.65 (14)
C8—C9—C10—C5 −1.0 (2) N5—C28—C33—C32 −179.13 (14)
C16—C11—C12—C13 0.7 (2) C29—C28—C33—C32 0.0 (2)
C16—C11—C12—C17 178.68 (13) C28—C29—C30—C31 −0.8 (2)
N2—C11—C12—C17 0.2 (2) C34—C29—C30—C31 178.51 (14)
N2—C11—C12—C13 −177.75 (13) C29—C30—C31—C32 0.2 (2)
C12—C11—C16—C15 −0.5 (2) C30—C31—C32—C33 0.4 (2)
N2—C11—C16—C15 177.89 (13) C31—C32—C33—C28 −0.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.92 (1) 1.80 (2) 2.5380 (16) 136 (2)
N5—H5···O2 0.90 (1) 1.72 (2) 2.5277 (17) 147 (2)
C21—H21···N3i 0.93 2.61 3.509 (2) 162
C30—H30···N3ii 0.93 2.60 3.487 (2) 159
C32—H32···O1iii 0.93 2.49 3.1994 (18) 133

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y−1, −z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2616).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905. [DOI] [PubMed]
  6. Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.
  7. Rãdulescu, C., Hossu, A. M. & Ionitã, I. (2006). Dyes Pigments, 71, 123–129.
  8. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017261/su2616sup1.cif

e-69-o1175-sup1.cif (35.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017261/su2616Isup2.hkl

e-69-o1175-Isup2.hkl (294.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017261/su2616Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES