Abstract
A mixed methane-oxidizing bacterial culture capable of stable and predictable growth in continuous culture was isolated. The culture consisted of two types of gram-negative nonsporulating rods resembling pseudomonads. The culture grew well at 45 C on an inorganic medium without asepsis. Specific metal requirements for Ca2+, Cu2+, MoO42−, Zn2+, Mn2+, Mg2+, and Fe3+ (or Fe2+) were shown. The cells grown in continuous culture contained 11.7 to 12.1% total nitrogen. From an animal nutrition standpoint, the distribution of amino acids was satisfactory. The continuous fermentation was operated over a range of steady-state dilution rates from 0.085 to 0.301 hr−1. The maximum specific growth rate for the culture, μmax, was 0.303 hr−1 (doubling time 2.29 hr). The average yield for all fermentations analyzed was 0.616 g (dry weight of cells per g of methane used and 0.215 g (dry weight) of cells per g of oxygen used. The yields on both methane and oxygen were higher for the oxygen-limited than for the methane-limited fermentations. The maximum productivity attained in the fermentor was 2.39 g (dry weight) of cells per hr per liter at a dilution rate of 0.187 hr−1 and a cell concentration of 12.8 g (dry weight) of cells per liter. The limit on maximum cell productivity was determined only by the mass transfer rate of oxygen in the fermentor. The simultaneous volumetric mass-transfer coefficients (kLa in hr−1) for oxygen and methane were determined. The results appear to indicate an oxygen to methane mass-transfer coefficient ratio of approximately 1.4.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- JOHNSON M. J. A rapid micromethod for estimation of non-volatile organic matter. J Biol Chem. 1949 Dec;181(2):707–711. [PubMed] [Google Scholar]
- Oelshlegel F. J., Jr, Schroeder J. R., Stahmann M. A. A simple procedure for basic hydrolysis of proteins and rapid determination of tryptophan using a starch column. Anal Biochem. 1970 Apr;34(2):331–337. doi: 10.1016/0003-2697(70)90116-8. [DOI] [PubMed] [Google Scholar]
- SCHRAM E., MOORE S., BIGWOOD E. J. Chromatographic determination of cystine as cysteic acid. Biochem J. 1954 May;57(1):33–37. doi: 10.1042/bj0570033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vary P. S., Johnson M. J. Cell yields of bacteria grown on methane. Appl Microbiol. 1967 Nov;15(6):1473–1478. doi: 10.1128/am.15.6.1473-1478.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
