Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):m356–m357. doi: 10.1107/S1600536813014694

Bis(3-chloro­benzoato-κ2 O,O′)bis­(nicotinamide-κN)copper(II)

Nihat Bozkurt a, Nefise Dilek b, Nagihan Çaylak Delibaş c, Hacali Necefoğlu a, Tuncer Hökelek d,*
PMCID: PMC3772403  PMID: 24046546

Abstract

The mol­ecule of the title CuII complex, [Cu(C7H4ClO2)2(C6H6N2O)2], contains two 3-chloro­benzoate (CB) and two nicotinamide (NA) ligands; the CB act as bidentate ligands, while the NA are monodentate ligands. The resulting CuN2O4 coordination polyhedron is a considerably distorted octahedron. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 17.92 (12) and 24.69 (16)°, while the two benzene rings and the two pyridine rings are oriented at dihedral angles of 52.20 (8) and 1.56 (6)°. In the crystal, N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into a three–dimensional network. The π–π contact between the benzene rings [centroid–centroid distance = 3.982 (2) Å] may further stabilize the crystal structure.

Related literature  

For niacin, see: Krishnamachari (1974). For the nicotinic acid derivative N,N-di­ethyl­nicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (1996); Hökelek, Dal et al. (2009); Hökelek, Yılmaz et al. (2009); Necefoğlu et al. (2011); Sertçelik et al. (2013).graphic file with name e-69-0m356-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C7H4ClO2)2(C6H6N2O)2]

  • M r = 618.91

  • Triclinic, Inline graphic

  • a = 9.6614 (2) Å

  • b = 12.5429 (3) Å

  • c = 12.8728 (3) Å

  • α = 61.598 (2)°

  • β = 87.386 (3)°

  • γ = 77.115 (3)°

  • V = 1334.30 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.15 mm

Data collection  

  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.774, T max = 0.852

  • 19053 measured reflections

  • 5434 independent reflections

  • 4970 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.083

  • S = 1.06

  • 5434 reflections

  • 368 parameters

  • 117 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014694/rk2404sup1.cif

e-69-0m356-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014694/rk2404Isup2.hkl

e-69-0m356-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.80 (2) 2.12 (2) 2.896 (2) 164 (2)
N2—H2B⋯O6ii 0.84 (3) 2.02 (3) 2.790 (2) 153 (2)
N4—H4A⋯O5i 0.83 (3) 2.01 (3) 2.817 (2) 164 (2)
N4—H4B⋯O4ii 0.81 (2) 2.05 (2) 2.836 (2) 162 (3)
C19—H19⋯O1iii 0.93 2.45 3.100 (2) 127
C21—H21⋯O5i 0.93 2.56 3.416 (2) 154
C24—H24⋯O3iv 0.93 2.59 3.475 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are indebted to Aksaray University and the Science and Technology Application and Research Center of Aksaray University, Aksaray, Turkey, for the use of X–ray diffractometer.

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N–diethylnicotinamide, an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, I, the CuII ion is surrounded by two 3–chlorobenzoate (CB) and two (NA) ligands. The CB act as bidentate ligands, while the NA are monodentate ligands. The structures of similar complexes of Zn(II) and Cd(II) ions, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, II, (Hökelek & Necefoğlu, 1996), [Zn(C9H10NO2)2(C6H6N2O).2H2O], III, (Hökelek, Dal et al., 2009) and [Cd(C8H5O3)2(C6H6N2O)2].H2O, IV, (Hökelek, Yılmaz et al., 2009) have also been determined.

In the title compound (Fig. 1), the Cu atom is displaced out of the least–squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.1556 (2)Å and -0.0577 (2)Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 17.92 (12)° and 24.69 (16)°, respectively, while those between rings A, B, C (N1/C15—C19) and D (N3/C21—C25) are A/B = 52.20 (8)°, A/C = 85.61 (7)°, A/D = 84.86 (7)°, B/C = 71.49 (7)°, B/D = 69.95 (6)° and C/D = 1.56 (6)°. The two four–membered rings, (Cu1/O1/O2/C1) and (Cu1/O3/O4/C8), are oriented at a dihedral angle of 12.07 (7)°.

In I, the O1–Cu1–O2 and O3–Cu1–O4 angles are 59.76 (5)° and 55.08 (5)°, respectively. The corresponding O–M–O (where M is a metal) angles are 58.3 (3)° in II, 60.03 (6)° in III, 52.91 (4) and 53.96 (4)° in IV, 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4], V, (Sertçelik et al., 2013), 57.75 (2)° in [Cu(C7H4FO2)2(C7H5FO2)(C6H6N2O)2], VI, (Necefoğlu et al., 2011), 58.3 (3)° in [Cu(C7H5O2)2(C10H14N2O)2], VII, (Hökelek et al., 1996) and 55.2 (1)° in [Cu(Asp)2(Py)2], where Asp is acetylsalicylate and Py is pyridine, VIII, (Greenaway et al., 1984).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules into a three–dimensional network, in which they may be effective in the stabilization of the structure. The π–π contact between the benzene rings, Cg2···Cg2i, where Cg2 is the centroid of the ring B (C9–C14) may further stabilize the structure, with Cg···Cg distance of 3.982 (2)Å. Symmetry code: (i) -x, 1-y, -z.

Experimental

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (50 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium 3–chlorobenzoate (1.79 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement

Atoms H2A, H2B, H4A and H4B (NH2 groups) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom–numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

[Cu(C7H4ClO2)2(C6H6N2O)2] Z = 2
Mr = 618.91 F(000) = 630
Triclinic, P1 Dx = 1.541 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6614 (2) Å Cell parameters from 9977 reflections
b = 12.5429 (3) Å θ = 2.2–28.3°
c = 12.8728 (3) Å µ = 1.07 mm1
α = 61.598 (2)° T = 296 K
β = 87.386 (3)° Block, blue
γ = 77.115 (3)° 0.35 × 0.20 × 0.15 mm
V = 1334.30 (6) Å3

Data collection

Bruker SMART BREEZE CCD diffractometer 5434 independent reflections
Radiation source: fine–focus sealed tube 4970 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
φ and ω scans θmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −12→12
Tmin = 0.774, Tmax = 0.852 k = −15→15
19053 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.6228P] where P = (Fo2 + 2Fc2)/3
5434 reflections (Δ/σ)max = 0.001
368 parameters Δρmax = 0.43 e Å3
117 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.27888 (2) 1.000999 (18) 0.199774 (17) 0.02922 (8)
Cl1 0.80542 (9) 0.43210 (7) 0.58781 (9) 0.0953 (3)
Cl2 −0.34732 (8) 1.57612 (7) −0.04862 (10) 0.1008 (3)
O1 0.38881 (17) 0.84400 (13) 0.15270 (12) 0.0491 (4)
O2 0.39807 (13) 0.83886 (11) 0.32503 (11) 0.0345 (3)
O3 0.18430 (14) 1.14369 (12) 0.05257 (11) 0.0375 (3)
O4 0.0977 (2) 1.19856 (14) 0.18577 (12) 0.0570 (4)
O5 0.76794 (14) 1.14536 (16) 0.40191 (15) 0.0545 (4)
O6 −0.25440 (15) 0.82581 (19) 0.51564 (15) 0.0641 (5)
N1 0.43976 (16) 1.08071 (13) 0.18924 (12) 0.0318 (3)
N2 0.54419 (18) 1.16359 (17) 0.45497 (15) 0.0398 (4)
H2A 0.565 (2) 1.176 (2) 0.507 (2) 0.040 (6)*
H2B 0.458 (3) 1.172 (2) 0.440 (2) 0.050 (6)*
N3 0.10420 (15) 0.93169 (13) 0.24499 (12) 0.0315 (3)
N4 −0.04948 (19) 0.83277 (19) 0.58345 (16) 0.0435 (4)
H4A 0.034 (3) 0.841 (2) 0.574 (2) 0.048 (6)*
H4B −0.079 (3) 0.818 (2) 0.648 (2) 0.058 (7)*
C1 0.4330 (2) 0.78886 (17) 0.25815 (16) 0.0354 (4)
C2 0.5297 (2) 0.66138 (17) 0.31005 (18) 0.0411 (4)
C3 0.6115 (2) 0.61181 (18) 0.4143 (2) 0.0448 (5)
H3 0.6067 0.6566 0.4553 0.054*
C4 0.7010 (2) 0.4944 (2) 0.4575 (2) 0.0551 (6)
C5 0.7073 (3) 0.4258 (2) 0.3993 (3) 0.0701 (7)
H5 0.7664 0.3465 0.4298 0.084*
C6 0.6252 (4) 0.4758 (2) 0.2957 (3) 0.0791 (9)
H6 0.6283 0.4298 0.2560 0.095*
C7 0.5381 (3) 0.5933 (2) 0.2499 (2) 0.0640 (7)
H7 0.4848 0.6272 0.1785 0.077*
C8 0.1053 (2) 1.21991 (17) 0.08210 (16) 0.0377 (4)
C9 0.0182 (2) 1.33707 (17) −0.01605 (17) 0.0391 (4)
C10 −0.1053 (2) 1.39805 (18) 0.0098 (2) 0.0487 (5)
H10 −0.1309 1.3691 0.0875 0.058*
C11 −0.1900 (2) 1.5022 (2) −0.0812 (2) 0.0582 (6)
C12 −0.1515 (3) 1.5492 (2) −0.1967 (2) 0.0668 (7)
H12 −0.2098 1.6192 −0.2573 0.080*
C13 −0.0263 (3) 1.4911 (2) −0.2205 (2) 0.0640 (6)
H13 0.0021 1.5236 −0.2975 0.077*
C14 0.0587 (3) 1.3845 (2) −0.13122 (18) 0.0498 (5)
H14 0.1426 1.3448 −0.1486 0.060*
C15 0.47759 (18) 1.09464 (16) 0.28005 (14) 0.0307 (3)
H15 0.4211 1.0749 0.3442 0.037*
C16 0.59731 (17) 1.13714 (15) 0.28251 (15) 0.0297 (3)
C17 0.6804 (2) 1.16596 (19) 0.18655 (18) 0.0412 (4)
H17 0.7637 1.1914 0.1866 0.049*
C18 0.6388 (2) 1.1566 (2) 0.09122 (18) 0.0474 (5)
H18 0.6915 1.1789 0.0248 0.057*
C19 0.5179 (2) 1.11393 (19) 0.09505 (16) 0.0405 (4)
H19 0.4899 1.1080 0.0302 0.049*
C20 0.64242 (18) 1.14888 (16) 0.38547 (16) 0.0334 (4)
C21 0.05121 (18) 0.90891 (16) 0.34942 (15) 0.0308 (3)
H21 0.0993 0.9225 0.4014 0.037*
C22 −0.07235 (18) 0.86597 (16) 0.38352 (15) 0.0319 (4)
C23 −0.1438 (2) 0.8479 (2) 0.30439 (18) 0.0444 (5)
H23 −0.2282 0.8210 0.3234 0.053*
C24 −0.0884 (2) 0.8701 (2) 0.19695 (19) 0.0494 (5)
H24 −0.1344 0.8574 0.1432 0.059*
C25 0.0353 (2) 0.91112 (19) 0.17077 (17) 0.0408 (4)
H25 0.0728 0.9252 0.0987 0.049*
C26 −0.13259 (19) 0.84043 (18) 0.50037 (17) 0.0380 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.03384 (13) 0.03311 (12) 0.02251 (11) −0.01037 (9) 0.00167 (8) −0.01354 (9)
Cl1 0.0746 (5) 0.0701 (4) 0.1137 (7) 0.0100 (4) −0.0438 (5) −0.0290 (4)
Cl2 0.0536 (4) 0.0683 (4) 0.1427 (8) 0.0039 (3) 0.0142 (4) −0.0287 (5)
O1 0.0689 (10) 0.0471 (8) 0.0279 (7) −0.0023 (7) 0.0038 (6) −0.0200 (6)
O2 0.0412 (7) 0.0358 (6) 0.0285 (6) −0.0055 (5) 0.0001 (5) −0.0180 (5)
O3 0.0451 (7) 0.0373 (6) 0.0279 (6) −0.0085 (6) −0.0017 (5) −0.0138 (5)
O4 0.0919 (12) 0.0461 (8) 0.0290 (7) −0.0090 (8) 0.0040 (7) −0.0175 (6)
O5 0.0295 (7) 0.0882 (11) 0.0697 (10) −0.0180 (7) 0.0031 (7) −0.0548 (9)
O6 0.0336 (8) 0.1099 (14) 0.0543 (10) −0.0324 (8) 0.0127 (7) −0.0376 (10)
N1 0.0362 (7) 0.0352 (7) 0.0256 (7) −0.0118 (6) 0.0024 (6) −0.0144 (6)
N2 0.0334 (9) 0.0622 (11) 0.0368 (9) −0.0152 (7) 0.0031 (7) −0.0322 (8)
N3 0.0344 (7) 0.0346 (7) 0.0266 (7) −0.0093 (6) 0.0006 (6) −0.0148 (6)
N4 0.0315 (9) 0.0711 (12) 0.0331 (9) −0.0195 (8) 0.0094 (7) −0.0262 (8)
C1 0.0398 (9) 0.0360 (9) 0.0327 (9) −0.0111 (7) 0.0080 (7) −0.0177 (7)
C2 0.0451 (11) 0.0366 (9) 0.0419 (10) −0.0110 (8) 0.0123 (8) −0.0192 (8)
C3 0.0408 (10) 0.0402 (10) 0.0536 (12) −0.0091 (8) 0.0040 (9) −0.0226 (9)
C4 0.0400 (11) 0.0442 (11) 0.0685 (15) −0.0062 (9) 0.0014 (10) −0.0181 (11)
C5 0.0697 (16) 0.0405 (12) 0.088 (2) 0.0011 (11) 0.0127 (14) −0.0276 (13)
C6 0.114 (2) 0.0505 (14) 0.0786 (19) −0.0030 (15) 0.0115 (17) −0.0426 (14)
C7 0.0931 (19) 0.0480 (12) 0.0525 (14) −0.0053 (12) 0.0044 (13) −0.0300 (11)
C8 0.0476 (10) 0.0350 (9) 0.0313 (9) −0.0130 (8) 0.0014 (8) −0.0148 (7)
C9 0.0482 (11) 0.0327 (9) 0.0353 (10) −0.0133 (8) 0.0000 (8) −0.0134 (8)
C10 0.0497 (12) 0.0373 (10) 0.0529 (12) −0.0149 (9) 0.0078 (9) −0.0148 (9)
C11 0.0430 (12) 0.0389 (11) 0.0801 (17) −0.0089 (9) −0.0009 (11) −0.0183 (11)
C12 0.0701 (16) 0.0426 (12) 0.0636 (16) −0.0101 (11) −0.0198 (13) −0.0054 (11)
C13 0.0832 (18) 0.0534 (13) 0.0370 (12) −0.0156 (12) −0.0041 (11) −0.0065 (10)
C14 0.0611 (13) 0.0457 (11) 0.0361 (10) −0.0123 (10) 0.0024 (9) −0.0144 (9)
C15 0.0330 (8) 0.0365 (8) 0.0243 (8) −0.0123 (7) 0.0053 (6) −0.0143 (7)
C16 0.0282 (8) 0.0321 (8) 0.0296 (8) −0.0081 (6) 0.0031 (6) −0.0150 (7)
C17 0.0364 (10) 0.0513 (11) 0.0419 (10) −0.0188 (8) 0.0117 (8) −0.0239 (9)
C18 0.0488 (11) 0.0652 (13) 0.0333 (10) −0.0234 (10) 0.0183 (8) −0.0245 (10)
C19 0.0464 (11) 0.0525 (11) 0.0277 (9) −0.0152 (9) 0.0073 (8) −0.0219 (8)
C20 0.0296 (8) 0.0374 (9) 0.0374 (9) −0.0096 (7) 0.0001 (7) −0.0203 (8)
C21 0.0312 (8) 0.0375 (9) 0.0276 (8) −0.0104 (7) 0.0000 (6) −0.0174 (7)
C22 0.0286 (8) 0.0351 (8) 0.0315 (9) −0.0074 (7) −0.0009 (7) −0.0151 (7)
C23 0.0392 (10) 0.0553 (12) 0.0450 (11) −0.0207 (9) −0.0010 (8) −0.0244 (10)
C24 0.0547 (12) 0.0657 (13) 0.0436 (11) −0.0237 (11) −0.0028 (9) −0.0339 (10)
C25 0.0492 (11) 0.0500 (11) 0.0302 (9) −0.0150 (9) 0.0018 (8) −0.0231 (8)
C26 0.0279 (9) 0.0484 (10) 0.0370 (10) −0.0114 (8) 0.0050 (7) −0.0188 (8)

Geometric parameters (Å, º)

Cu1—O1 2.3487 (14) C6—H6 0.9300
Cu1—O2 2.0168 (12) C7—C6 1.376 (4)
Cu1—O3 1.9574 (12) C7—H7 0.9300
Cu1—O4 2.6280 (12) C8—C9 1.498 (3)
Cu1—N1 1.9947 (14) C9—C10 1.385 (3)
Cu1—N3 2.0065 (14) C9—C14 1.384 (3)
Cu1—C1 2.5090 (18) C10—C11 1.379 (3)
Cl1—C4 1.731 (3) C10—H10 0.9300
Cl2—C11 1.740 (3) C11—C12 1.382 (4)
O1—C1 1.237 (2) C12—H12 0.9300
O2—C1 1.281 (2) C13—C12 1.369 (4)
O3—C8 1.279 (2) C13—H13 0.9300
O4—C8 1.232 (2) C14—C13 1.385 (3)
O5—C20 1.228 (2) C14—H14 0.9300
O6—C26 1.224 (2) C15—H15 0.9300
N1—C15 1.339 (2) C16—C15 1.385 (2)
N1—C19 1.338 (2) C16—C17 1.384 (2)
N2—C20 1.318 (2) C16—C20 1.495 (2)
N2—H2A 0.79 (2) C17—C18 1.373 (3)
N2—H2B 0.84 (3) C17—H17 0.9300
N3—C21 1.337 (2) C18—H18 0.9300
N3—C25 1.338 (2) C19—C18 1.379 (3)
N4—C26 1.321 (2) C19—H19 0.9300
N4—H4A 0.83 (3) C21—C22 1.386 (2)
N4—H4B 0.81 (3) C21—H21 0.9300
C1—C2 1.500 (3) C22—C23 1.385 (3)
C2—C3 1.377 (3) C22—C26 1.500 (3)
C2—C7 1.388 (3) C23—C24 1.382 (3)
C3—C4 1.387 (3) C23—H23 0.9300
C3—H3 0.9300 C24—H24 0.9300
C4—C5 1.376 (4) C25—C24 1.371 (3)
C5—C6 1.371 (4) C25—H25 0.9300
C5—H5 0.9300
O1—Cu1—C1 29.28 (5) O4—C8—O3 122.57 (17)
O2—Cu1—O1 59.76 (5) O4—C8—C9 120.80 (18)
O2—Cu1—C1 30.48 (5) C10—C9—C8 118.89 (18)
O3—Cu1—O1 106.81 (5) C14—C9—C8 121.26 (19)
O3—Cu1—O2 166.26 (5) C14—C9—C10 119.85 (19)
O3—Cu1—O4 55.08 (5) C9—C10—H10 120.4
O3—Cu1—N1 91.50 (6) C11—C10—C9 119.2 (2)
O3—Cu1—N3 93.10 (6) C11—C10—H10 120.4
O3—Cu1—C1 136.00 (6) C10—C11—Cl2 119.0 (2)
N1—Cu1—O1 100.98 (6) C10—C11—C12 121.3 (2)
N1—Cu1—O2 88.65 (5) C12—C11—Cl2 119.71 (19)
N1—Cu1—N3 164.90 (6) C11—C12—H12 120.5
N1—Cu1—C1 95.33 (6) C13—C12—C11 119.0 (2)
N3—Cu1—O1 91.43 (6) C13—C12—H12 120.5
N3—Cu1—O2 90.26 (5) C12—C13—C14 120.7 (2)
N3—Cu1—C1 91.32 (6) C12—C13—H13 119.6
C1—O1—Cu1 82.56 (11) C14—C13—H13 119.6
C1—O2—Cu1 96.52 (11) C9—C14—C13 119.8 (2)
C8—O3—Cu1 106.27 (11) C9—C14—H14 120.1
C15—N1—Cu1 120.40 (11) C13—C14—H14 120.1
C19—N1—Cu1 120.98 (12) N1—C15—C16 122.74 (16)
C19—N1—C15 118.47 (15) N1—C15—H15 118.6
C20—N2—H2A 119.4 (16) C16—C15—H15 118.6
C20—N2—H2B 121.7 (17) C15—C16—C20 122.86 (15)
H2A—N2—H2B 118 (2) C17—C16—C15 117.97 (16)
C21—N3—Cu1 120.20 (11) C17—C16—C20 119.14 (16)
C21—N3—C25 118.42 (15) C16—C17—H17 120.3
C25—N3—Cu1 121.34 (13) C18—C17—C16 119.43 (17)
C26—N4—H4A 122.8 (16) C18—C17—H17 120.3
C26—N4—H4B 119.5 (18) C17—C18—C19 119.23 (17)
H4A—N4—H4B 118 (2) C17—C18—H18 120.4
O1—C1—Cu1 68.16 (10) C19—C18—H18 120.4
O1—C1—O2 121.15 (17) N1—C19—C18 122.04 (17)
O1—C1—C2 120.21 (17) N1—C19—H19 119.0
O2—C1—Cu1 53.00 (9) C18—C19—H19 119.0
O2—C1—C2 118.64 (16) O5—C20—N2 122.54 (17)
C2—C1—Cu1 171.55 (14) O5—C20—C16 119.44 (16)
C3—C2—C1 121.54 (18) N2—C20—C16 118.02 (15)
C3—C2—C7 119.6 (2) N3—C21—C22 122.83 (15)
C7—C2—C1 118.8 (2) N3—C21—H21 118.6
C2—C3—C4 119.3 (2) C22—C21—H21 118.6
C2—C3—H3 120.4 C21—C22—C26 123.15 (15)
C4—C3—H3 120.4 C23—C22—C21 117.85 (17)
C3—C4—Cl1 119.5 (2) C23—C22—C26 118.99 (16)
C5—C4—Cl1 119.32 (19) C22—C23—H23 120.3
C5—C4—C3 121.1 (2) C24—C23—C22 119.42 (18)
C4—C5—H5 120.4 C24—C23—H23 120.3
C6—C5—C4 119.1 (2) C23—C24—H24 120.5
C6—C5—H5 120.4 C25—C24—C23 118.95 (17)
C5—C6—C7 120.6 (3) C25—C24—H24 120.5
C5—C6—H6 119.7 N3—C25—C24 122.50 (18)
C7—C6—H6 119.7 N3—C25—H25 118.8
C2—C7—H7 119.9 C24—C25—H25 118.8
C6—C7—C2 120.2 (3) O6—C26—N4 122.87 (19)
C6—C7—H7 119.9 O6—C26—C22 119.36 (17)
O3—C8—C9 116.61 (16) N4—C26—C22 117.76 (16)
O2—Cu1—O1—C1 −0.68 (11) Cu1—N3—C21—C22 177.25 (13)
O3—Cu1—O1—C1 176.18 (11) C25—N3—C21—C22 −0.5 (3)
N1—Cu1—O1—C1 81.22 (12) Cu1—N3—C25—C24 −176.47 (16)
N3—Cu1—O1—C1 −90.14 (12) C21—N3—C25—C24 1.3 (3)
O1—Cu1—O2—C1 0.66 (10) O1—C1—C2—C3 161.79 (19)
O3—Cu1—O2—C1 −12.1 (3) O1—C1—C2—C7 −17.1 (3)
N1—Cu1—O2—C1 −102.89 (11) O2—C1—C2—C3 −18.0 (3)
N3—Cu1—O2—C1 92.17 (11) O2—C1—C2—C7 163.1 (2)
O1—Cu1—O3—C8 169.20 (11) C1—C2—C3—C4 −178.91 (18)
O2—Cu1—O3—C8 −179.33 (19) C7—C2—C3—C4 0.0 (3)
N1—Cu1—O3—C8 −88.86 (12) C1—C2—C7—C6 −179.5 (2)
N3—Cu1—O3—C8 76.76 (12) C3—C2—C7—C6 1.5 (4)
C1—Cu1—O3—C8 171.88 (11) C2—C3—C4—Cl1 179.33 (16)
O1—Cu1—N1—C15 −126.37 (13) C2—C3—C4—C5 −1.3 (3)
O1—Cu1—N1—C19 49.23 (15) Cl1—C4—C5—C6 −179.5 (2)
O2—Cu1—N1—C15 −67.55 (14) C3—C4—C5—C6 1.1 (4)
O2—Cu1—N1—C19 108.05 (15) C4—C5—C6—C7 0.4 (5)
O3—Cu1—N1—C15 126.19 (14) C2—C7—C6—C5 −1.7 (5)
O3—Cu1—N1—C19 −58.21 (15) O3—C8—C9—C10 155.12 (18)
N3—Cu1—N1—C15 18.4 (3) O3—C8—C9—C14 −24.5 (3)
N3—Cu1—N1—C19 −165.97 (19) O4—C8—C9—C10 −23.5 (3)
C1—Cu1—N1—C15 −97.33 (14) O4—C8—C9—C14 156.8 (2)
C1—Cu1—N1—C19 78.27 (15) C8—C9—C10—C11 −176.52 (18)
O1—Cu1—N3—C21 128.70 (13) C14—C9—C10—C11 3.1 (3)
O1—Cu1—N3—C25 −53.57 (15) C8—C9—C14—C13 178.2 (2)
O2—Cu1—N3—C21 68.94 (13) C10—C9—C14—C13 −1.4 (3)
O2—Cu1—N3—C25 −113.33 (15) C9—C10—C11—Cl2 178.44 (17)
O3—Cu1—N3—C21 −124.39 (13) C9—C10—C11—C12 −2.3 (3)
O3—Cu1—N3—C25 53.34 (15) Cl2—C11—C12—C13 178.9 (2)
N1—Cu1—N3—C21 −16.8 (3) C10—C11—C12—C13 −0.4 (4)
N1—Cu1—N3—C25 160.9 (2) C14—C13—C12—C11 2.1 (4)
C1—Cu1—N3—C21 99.41 (13) C9—C14—C13—C12 −1.2 (4)
C1—Cu1—N3—C25 −82.86 (15) C17—C16—C15—N1 −0.1 (3)
O1—Cu1—C1—O2 −178.84 (18) C20—C16—C15—N1 −177.97 (16)
O2—Cu1—C1—O1 178.84 (18) C15—C16—C17—C18 2.7 (3)
O3—Cu1—C1—O1 −5.26 (15) C20—C16—C17—C18 −179.32 (18)
O3—Cu1—C1—O2 175.90 (9) C15—C16—C20—O5 155.40 (18)
N1—Cu1—C1—O1 −102.99 (12) C15—C16—C20—N2 −25.1 (3)
N1—Cu1—C1—O2 78.17 (11) C17—C16—C20—O5 −22.5 (3)
N3—Cu1—C1—O1 90.58 (12) C17—C16—C20—N2 157.06 (18)
N3—Cu1—C1—O2 −88.26 (11) C16—C17—C18—C19 −2.6 (3)
Cu1—O1—C1—O2 1.09 (17) N1—C19—C18—C17 −0.2 (3)
Cu1—O1—C1—C2 −178.70 (16) N3—C21—C22—C23 −0.8 (3)
Cu1—O2—C1—O1 −1.3 (2) N3—C21—C22—C26 −179.89 (16)
Cu1—O2—C1—C2 178.53 (14) C21—C22—C23—C24 1.5 (3)
Cu1—O3—C8—O4 −0.1 (2) C26—C22—C23—C24 −179.42 (19)
Cu1—O3—C8—C9 −178.74 (13) C21—C22—C26—O6 166.2 (2)
Cu1—N1—C15—C16 173.02 (13) C21—C22—C26—N4 −14.9 (3)
C19—N1—C15—C16 −2.7 (3) C23—C22—C26—O6 −12.9 (3)
Cu1—N1—C19—C18 −172.84 (16) C23—C22—C26—N4 166.07 (19)
C15—N1—C19—C18 2.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.80 (2) 2.12 (2) 2.896 (2) 164 (2)
N2—H2B···O6ii 0.84 (3) 2.02 (3) 2.790 (2) 153 (2)
N4—H4A···O5i 0.83 (3) 2.01 (3) 2.817 (2) 164 (2)
N4—H4B···O4ii 0.81 (2) 2.05 (2) 2.836 (2) 162 (3)
C19—H19···O1iii 0.93 2.45 3.100 (2) 127
C21—H21···O5i 0.93 2.56 3.416 (2) 154
C24—H24···O3iv 0.93 2.59 3.475 (3) 158

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1, −y+2, −z; (iv) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2404).

References

  1. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  2. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.
  5. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652. [DOI] [PMC free article] [PubMed]
  6. Hökelek, T., Gündüz, H. & Necefouglu, H. (1996). Acta Cryst. C52, 2470–2473.
  7. Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.
  8. Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416–m1417. [DOI] [PMC free article] [PubMed]
  9. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [DOI] [PubMed]
  10. Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m887–m888. [DOI] [PMC free article] [PubMed]
  11. Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014694/rk2404sup1.cif

e-69-0m356-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014694/rk2404Isup2.hkl

e-69-0m356-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES