Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):m358–m359. doi: 10.1107/S1600536813014876

Poly[[tetra­aqua­tetra­kis­[μ3-5-(pyridine-4-carboxamido)­isophthalato]nickel(II)diterbium(III)] tetra­hydrate]

Yi-Fang Deng a, Man-Sheng Chen a, Chun-Hua Zhang a,*, Xue Nie a
PMCID: PMC3772404  PMID: 24046547

Abstract

In the title compound, {[NiTb2(C14H8N2O5)4(H2O)4]·4H2O}n, the TbIII ion is coordinated by one water mol­ecule and seven O atoms from four 5-(pyridine-4-carboxamido)­isophthalate (L) ligands in a distorted square-anti­prismatic arrangement, while the NiII ion, lying on an inversion center, is six-coordinated in an octa­hedral geometry by two pyridine N atoms, two carboxyl­ate O atoms and two water mol­ecules. One L ligand bridges two TbIII ions and one NiII ion through two carboxyl­ate groups and one pyridine N atom. The other L ligand bridges two TbIII ions and one NiII ion through two carboxyl­ate groups, while the uncoordinating pyridine N atom is hydrogen bonded to an adjacent coordinating water mol­ecule. Extensive O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds play an important role in stabilizing the crystal structure.

Related literature  

For background to hetero-metallic complexes, see: Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004). For related structures, see: Chen et al. (2011); Deng et al. (2011).graphic file with name e-69-0m358-scheme1.jpg

Experimental  

Crystal data  

  • [NiTb2(C14H8N2O5)4(H2O)4]·4H2O

  • M r = 1657.57

  • Triclinic, Inline graphic

  • a = 10.2347 (12) Å

  • b = 10.8608 (13) Å

  • c = 13.7452 (17) Å

  • α = 79.053 (2)°

  • β = 78.745 (1)°

  • γ = 86.326 (2)°

  • V = 1470.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.08 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.578, T max = 0.807

  • 7345 measured reflections

  • 5088 independent reflections

  • 4486 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.074

  • S = 1.03

  • 5088 reflections

  • 434 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813014876/hy2627sup1.cif

e-69-0m358-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014876/hy2627Isup2.hkl

e-69-0m358-Isup2.hkl (249.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4W i 0.86 2.16 3.000 (6) 166
N3—H3⋯O4ii 0.86 2.17 2.958 (6) 153
O1W—H1WA⋯O6iii 0.82 2.24 2.988 (4) 151
O1W—H1WB⋯O3W iv 0.85 2.04 2.763 (6) 143
O2W—H2WA⋯O3W v 0.85 (6) 2.47 (6) 3.117 (7) 134 (5)
O2W—H2WB⋯N2vi 0.85 1.92 2.672 (6) 147
O3W—H3WC⋯O3iv 0.85 1.92 2.736 (5) 159
O3W—H3WD⋯O8vii 0.85 1.98 2.793 (5) 160
O4W—H4WA⋯O9viii 0.85 2.25 3.088 (6) 170
O4W—H4WB⋯O9ii 0.85 2.19 3.034 (5) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by the Open Fund Project of Key Laboratories in Hunan Universities (grant No. 11 K009) and the Hunan Provincial Natural Science Foundation of China (grant No.13 J J6069).

supplementary crystallographic information

Comment

The synthesis and investigation of d-f heterometallic complexes are challenge for chemists and have attracted increasing attention in last few years since the competitive reaction containing d-f metal ions in conjunction with ligands often result in the formation of a mixture of homometallic assemblies rather than heterometallic analogous (Gu & Xue, 2006; Liang et al., 2000; Prasad et al., 2007; Zhao et al., 2003, 2004;). We have recently prepared the title compound, a new transition metal(II)–lanthanide(III) coordination polymer, under hydrothermal conditions.

In the title compound, the TbIII ion is eight-coordinated by seven O atoms from four 5-(pyridine-4-carboxamido)isophthalate (L) ligands and one water molecule, forming a distorted square-antiprismatic geometry (Fig. 1). It is interesting that the carboxylate groups of two unique L ligands exhibit different coordination modes: one coordinates to two TbIII ions and one NiII ion using its two carboxylate groups with µ111-chelate and µ211-bis-monodentate coordination modes while the pyridyl group is free of coordination, the other one coordinates to two TbIII ions through the carboxylate groups with µ111-chelate coordination mode and to one NiII ion through the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups, a complicated three-dimensional network is formed (Fig. 2), which is similar to the complexes {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen et al., 2011; Deng et al., 2011).

Experimental

A mixture of Tb(NO3)3.6H2O (22.1 mg. 0.05 mmol), H2L (28.7 mg, 0.1 mmol), NiSO4.6H2O (13.1 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol), EtOH (4 ml) and H2O (6 ml) was heated in a 16 ml capacity Teflon-lined reaction vessel at 453 K for 3 days. The reaction mixture was cooled to room temperature over a period of 48 h. The product was collected by filtration, washed with H2O and air-dried.

Refinement

H atoms bonded to C and N atoms were placed geometrically and refiined as riding atoms, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). The water H atoms were found from difference Fourier maps and refined with a restraint of O—H = 0.85 (1) Å. In final refinements, these H atoms were refined as riding atoms with Uiso(H) = 1.2Ueq(O). H2WA was refined isotropically.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) x, y, -1+z; (B) 2-x, 1-y, 2-z; (C) 2-x, 1-y, 1-z; (D) x, -1+y, z; (E) -1+x, y, z.]

Fig. 2.

Fig. 2.

A view showing the three-dimensional network of the title compound.

Crystal data

[NiTb2(C14H8N2O5)4(H2O)4]·4H2O Z = 1
Mr = 1657.57 F(000) = 822
Triclinic, P1 Dx = 1.872 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.2347 (12) Å Cell parameters from 3746 reflections
b = 10.8608 (13) Å θ = 2.1–24.8°
c = 13.7452 (17) Å µ = 2.80 mm1
α = 79.053 (2)° T = 293 K
β = 78.745 (1)° Block, green
γ = 86.326 (2)° 0.22 × 0.16 × 0.08 mm
V = 1470.7 (3) Å3

Data collection

Bruker APEX CCD diffractometer 5088 independent reflections
Radiation source: fine-focus sealed tube 4486 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→10
Tmin = 0.578, Tmax = 0.807 k = −12→12
7345 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0233P)2] where P = (Fo2 + 2Fc2)/3
5088 reflections (Δ/σ)max = 0.013
434 parameters Δρmax = 1.24 e Å3
1 restraint Δρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 1.0000 0.5000 0.5000 0.0250 (2)
Tb1 0.68072 (2) 0.07753 (2) 0.702898 (17) 0.01601 (8)
C1 0.7020 (4) 0.4733 (4) 0.7262 (3) 0.0183 (11)
C2 0.6789 (4) 0.4175 (4) 0.8277 (3) 0.0183 (11)
H2 0.6736 0.3308 0.8459 0.022*
C3 0.6638 (4) 0.4905 (4) 0.9018 (3) 0.0175 (11)
C4 0.6652 (4) 0.6204 (4) 0.8744 (3) 0.0178 (10)
H4 0.6536 0.6703 0.9236 0.021*
C5 0.6839 (4) 0.6748 (4) 0.7733 (3) 0.0158 (10)
C6 0.7036 (4) 0.6024 (4) 0.6993 (3) 0.0193 (11)
H6 0.7179 0.6402 0.6317 0.023*
C7 0.6867 (4) 0.8146 (4) 0.7468 (3) 0.0175 (10)
C8 0.7334 (5) 0.3941 (4) 0.6453 (4) 0.0204 (11)
C9 0.6652 (5) 0.4829 (5) 1.0811 (4) 0.0273 (12)
C10 0.6518 (5) 0.4003 (5) 1.1831 (4) 0.0236 (12)
C11 0.6510 (5) 0.2706 (5) 1.2016 (4) 0.0289 (13)
H11 0.6537 0.2274 1.1489 0.035*
C12 0.6461 (5) 0.2065 (5) 1.2977 (4) 0.0335 (14)
H12 0.6461 0.1194 1.3084 0.040*
C13 0.6395 (6) 0.3855 (6) 1.3606 (4) 0.0377 (14)
H13 0.6341 0.4257 1.4154 0.045*
C14 0.6452 (5) 0.4584 (5) 1.2657 (4) 0.0338 (13)
H14 0.6446 0.5454 1.2574 0.041*
C15 1.0258 (4) 0.1208 (4) 0.8319 (3) 0.0182 (11)
C16 1.1580 (5) 0.1051 (4) 0.7839 (3) 0.0202 (11)
H16 1.1759 0.0885 0.7186 0.024*
C17 1.2619 (4) 0.1142 (4) 0.8325 (3) 0.0188 (11)
C18 1.2340 (5) 0.1428 (4) 0.9301 (3) 0.0199 (11)
H18 1.3034 0.1484 0.9636 0.024*
C19 1.1034 (5) 0.1627 (4) 0.9764 (3) 0.0202 (11)
C20 0.9994 (5) 0.1486 (4) 0.9280 (3) 0.0202 (11)
H20 0.9116 0.1578 0.9605 0.024*
C21 0.9089 (5) 0.1091 (4) 0.7832 (4) 0.0190 (11)
C22 1.4064 (5) 0.0981 (4) 0.7846 (4) 0.0209 (11)
C23 0.9939 (5) 0.2964 (5) 1.0918 (4) 0.0243 (12)
C24 0.9908 (5) 0.3390 (5) 1.1902 (4) 0.0239 (12)
C25 0.9825 (5) 0.2574 (5) 1.2813 (4) 0.0249 (12)
H25 0.9818 0.1711 1.2847 0.030*
C26 0.9751 (5) 0.3078 (5) 1.3671 (4) 0.0259 (12)
H26 0.9668 0.2531 1.4287 0.031*
C27 0.9848 (5) 0.5064 (5) 1.2781 (4) 0.0260 (12)
H27 0.9863 0.5924 1.2762 0.031*
C28 0.9886 (5) 0.4653 (5) 1.1899 (4) 0.0254 (12)
H28 0.9897 0.5224 1.1301 0.031*
N1 0.6471 (4) 0.4307 (4) 1.0036 (3) 0.0198 (9)
H1 0.6233 0.3539 1.0175 0.024*
N2 0.6415 (4) 0.2613 (4) 1.3772 (3) 0.0351 (12)
N3 1.0796 (4) 0.2002 (4) 1.0719 (3) 0.0215 (9)
H3 1.1205 0.1609 1.1182 0.026*
N4 0.9792 (4) 0.4297 (4) 1.3670 (3) 0.0230 (10)
O1 0.8077 (3) 0.4367 (3) 0.5645 (2) 0.0279 (8)
O2 0.6811 (3) 0.2878 (3) 0.6642 (2) 0.0299 (9)
O3 0.6713 (4) 0.8705 (3) 0.6617 (2) 0.0331 (9)
O4 0.7068 (4) 0.8772 (3) 0.8101 (2) 0.0339 (9)
O5 0.6912 (5) 0.5911 (4) 1.0737 (3) 0.0543 (13)
O6 0.9267 (3) 0.0947 (3) 0.6916 (2) 0.0292 (9)
O7 0.7926 (3) 0.1150 (3) 0.8333 (2) 0.0223 (8)
O8 1.4397 (3) 0.0991 (3) 0.6916 (2) 0.0279 (8)
O9 1.4954 (3) 0.0850 (4) 0.8377 (2) 0.0389 (10)
O10 0.9241 (4) 0.3510 (4) 1.0333 (3) 0.0367 (10)
O1W 0.9258 (3) 0.6831 (3) 0.4332 (2) 0.0304 (9)
H1WB 0.8653 0.7199 0.4703 0.036*
H1WA 0.9887 0.7246 0.3992 0.036*
O2W 0.7196 (4) 0.0949 (4) 0.5260 (3) 0.0384 (10)
H2WA 0.762 (6) 0.038 (5) 0.497 (5) 0.08 (3)*
H2WB 0.6846 0.1625 0.4985 0.046*
O3W 0.2999 (4) 0.1656 (5) 0.5331 (3) 0.0711 (15)
H3WC 0.3276 0.1462 0.4754 0.085*
H3WD 0.3569 0.1383 0.5705 0.085*
O4W 0.4141 (5) 0.8386 (4) 0.9854 (3) 0.0655 (15)
H4WA 0.4330 0.9020 0.9390 0.079*
H4WB 0.4387 0.8527 1.0378 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0299 (6) 0.0268 (5) 0.0192 (5) −0.0041 (4) −0.0022 (4) −0.0074 (4)
Tb1 0.01649 (14) 0.01550 (13) 0.01686 (13) −0.00072 (9) −0.00436 (9) −0.00362 (9)
C1 0.018 (3) 0.017 (3) 0.019 (3) −0.001 (2) −0.004 (2) −0.002 (2)
C2 0.019 (3) 0.015 (3) 0.017 (3) −0.002 (2) 0.001 (2) 0.001 (2)
C3 0.011 (2) 0.023 (3) 0.016 (3) 0.001 (2) −0.001 (2) 0.002 (2)
C4 0.015 (3) 0.020 (3) 0.019 (3) 0.001 (2) −0.006 (2) −0.004 (2)
C5 0.014 (2) 0.014 (2) 0.019 (3) −0.0025 (19) −0.003 (2) −0.001 (2)
C6 0.019 (3) 0.020 (3) 0.017 (3) −0.002 (2) −0.001 (2) 0.000 (2)
C7 0.016 (3) 0.017 (3) 0.021 (3) 0.000 (2) −0.005 (2) −0.005 (2)
C8 0.021 (3) 0.018 (3) 0.024 (3) 0.004 (2) −0.010 (2) −0.003 (2)
C9 0.026 (3) 0.031 (3) 0.023 (3) −0.002 (2) −0.002 (2) −0.001 (2)
C10 0.016 (3) 0.030 (3) 0.023 (3) −0.002 (2) −0.004 (2) −0.001 (2)
C11 0.034 (3) 0.028 (3) 0.025 (3) −0.006 (2) −0.009 (3) −0.002 (2)
C12 0.038 (3) 0.030 (3) 0.032 (3) −0.011 (3) −0.011 (3) 0.005 (3)
C13 0.046 (4) 0.052 (4) 0.018 (3) 0.005 (3) −0.008 (3) −0.012 (3)
C14 0.040 (4) 0.034 (3) 0.027 (3) −0.002 (3) −0.007 (3) −0.004 (3)
C15 0.017 (3) 0.019 (3) 0.020 (3) 0.001 (2) −0.006 (2) −0.004 (2)
C16 0.022 (3) 0.024 (3) 0.015 (2) 0.001 (2) −0.003 (2) −0.006 (2)
C17 0.013 (3) 0.024 (3) 0.020 (3) −0.001 (2) −0.005 (2) −0.002 (2)
C18 0.017 (3) 0.022 (3) 0.024 (3) −0.003 (2) −0.011 (2) −0.007 (2)
C19 0.020 (3) 0.024 (3) 0.020 (3) −0.001 (2) −0.003 (2) −0.010 (2)
C20 0.016 (3) 0.024 (3) 0.022 (3) 0.001 (2) −0.002 (2) −0.010 (2)
C21 0.022 (3) 0.016 (3) 0.022 (3) −0.001 (2) −0.008 (2) −0.006 (2)
C22 0.022 (3) 0.017 (3) 0.024 (3) 0.000 (2) −0.004 (2) −0.003 (2)
C23 0.020 (3) 0.032 (3) 0.023 (3) −0.005 (2) −0.002 (2) −0.012 (2)
C24 0.014 (3) 0.039 (3) 0.020 (3) 0.000 (2) −0.004 (2) −0.010 (2)
C25 0.024 (3) 0.032 (3) 0.022 (3) −0.002 (2) −0.005 (2) −0.011 (2)
C26 0.028 (3) 0.029 (3) 0.019 (3) −0.009 (2) −0.003 (2) −0.001 (2)
C27 0.027 (3) 0.025 (3) 0.026 (3) −0.002 (2) −0.002 (2) −0.006 (2)
C28 0.029 (3) 0.032 (3) 0.016 (3) 0.001 (2) −0.005 (2) −0.005 (2)
N1 0.024 (2) 0.016 (2) 0.017 (2) −0.0011 (17) −0.0026 (18) 0.0018 (17)
N2 0.041 (3) 0.040 (3) 0.023 (3) −0.010 (2) −0.009 (2) 0.004 (2)
N3 0.020 (2) 0.030 (2) 0.016 (2) 0.0027 (18) −0.0079 (18) −0.0040 (18)
N4 0.020 (2) 0.034 (3) 0.017 (2) −0.0042 (19) −0.0025 (18) −0.0100 (19)
O1 0.028 (2) 0.037 (2) 0.0188 (19) −0.0097 (17) 0.0015 (16) −0.0089 (16)
O2 0.046 (2) 0.0134 (19) 0.030 (2) −0.0048 (16) −0.0039 (18) −0.0058 (15)
O3 0.068 (3) 0.0138 (19) 0.0196 (19) −0.0010 (17) −0.0143 (19) −0.0012 (15)
O4 0.067 (3) 0.0150 (19) 0.028 (2) 0.0044 (17) −0.027 (2) −0.0068 (15)
O5 0.111 (4) 0.026 (2) 0.031 (2) −0.024 (2) −0.023 (2) −0.0010 (18)
O6 0.019 (2) 0.050 (2) 0.023 (2) −0.0029 (17) −0.0051 (16) −0.0159 (17)
O7 0.0126 (18) 0.035 (2) 0.0232 (19) −0.0012 (15) −0.0038 (15) −0.0134 (15)
O8 0.0151 (19) 0.050 (2) 0.022 (2) 0.0009 (16) −0.0038 (15) −0.0162 (17)
O9 0.0142 (19) 0.082 (3) 0.021 (2) 0.0050 (19) −0.0062 (16) −0.0094 (19)
O10 0.038 (2) 0.050 (3) 0.029 (2) 0.0195 (19) −0.0152 (19) −0.0220 (18)
O1W 0.035 (2) 0.031 (2) 0.0230 (19) 0.0021 (17) 0.0013 (17) −0.0064 (16)
O2W 0.064 (3) 0.030 (2) 0.018 (2) 0.004 (2) −0.009 (2) 0.0003 (17)
O3W 0.059 (3) 0.124 (5) 0.027 (2) 0.027 (3) −0.013 (2) −0.012 (3)
O4W 0.137 (5) 0.035 (3) 0.027 (2) −0.031 (3) −0.014 (3) −0.0027 (19)

Geometric parameters (Å, º)

Ni1—O1 2.096 (3) C15—C20 1.383 (6)
Ni1—N4i 2.161 (4) C15—C16 1.399 (6)
Ni1—O1W 2.181 (3) C15—C21 1.504 (6)
Tb1—O2 2.245 (3) C16—C17 1.379 (6)
Tb1—O2W 2.359 (4) C16—H16 0.9300
Tb1—O9ii 2.388 (3) C17—C18 1.405 (6)
Tb1—O7 2.413 (3) C17—C22 1.511 (6)
Tb1—O4iii 2.416 (3) C18—C19 1.386 (6)
Tb1—O3iii 2.433 (3) C18—H18 0.9300
Tb1—O8ii 2.495 (3) C19—C20 1.392 (6)
Tb1—O6 2.509 (3) C19—N3 1.418 (6)
C1—C6 1.381 (6) C20—H20 0.9300
C1—C2 1.392 (6) C21—O7 1.257 (5)
C1—C8 1.506 (6) C21—O6 1.275 (5)
C2—C3 1.385 (6) C22—O8 1.255 (5)
C2—H2 0.9300 C22—O9 1.259 (6)
C3—C4 1.389 (6) C23—O10 1.225 (6)
C3—N1 1.409 (6) C23—N3 1.354 (6)
C4—C5 1.384 (6) C23—C24 1.505 (7)
C4—H4 0.9300 C24—C28 1.370 (7)
C5—C6 1.377 (6) C24—C25 1.381 (7)
C5—C7 1.493 (6) C25—C26 1.379 (6)
C6—H6 0.9300 C25—H25 0.9300
C7—O3 1.246 (5) C26—N4 1.327 (6)
C7—O4 1.255 (5) C26—H26 0.9300
C8—O1 1.243 (5) C27—N4 1.336 (6)
C8—O2 1.264 (5) C27—C28 1.361 (7)
C9—O5 1.203 (6) C27—H27 0.9300
C9—N1 1.345 (6) C28—H28 0.9300
C9—C10 1.500 (7) N1—H1 0.8600
C10—C11 1.384 (7) N3—H3 0.8600
C10—C14 1.389 (7) O1W—H1WB 0.8524
C11—C12 1.365 (7) O1W—H1WA 0.8227
C11—H11 0.9300 O2W—H2WA 0.849 (5)
C12—N2 1.331 (7) O2W—H2WB 0.8506
C12—H12 0.9300 O3W—H3WC 0.8494
C13—N2 1.324 (7) O3W—H3WD 0.8540
C13—C14 1.384 (7) O4W—H4WA 0.8486
C13—H13 0.9300 O4W—H4WB 0.8510
C14—H14 0.9300
O1—Ni1—O1iv 180.000 (1) O5—C9—C10 118.2 (5)
O1—Ni1—N4i 87.40 (13) N1—C9—C10 117.6 (5)
O1iv—Ni1—N4i 92.60 (13) C11—C10—C14 117.0 (5)
O1—Ni1—N4v 92.60 (13) C11—C10—C9 125.5 (5)
O1iv—Ni1—N4v 87.40 (13) C14—C10—C9 117.4 (5)
N4i—Ni1—N4v 180.000 (1) C12—C11—C10 119.5 (5)
O1—Ni1—O1W 92.84 (13) C12—C11—H11 120.3
O1iv—Ni1—O1W 87.16 (13) C10—C11—H11 120.3
N4i—Ni1—O1W 88.99 (14) N2—C12—C11 123.9 (5)
N4v—Ni1—O1W 91.01 (14) N2—C12—H12 118.0
O1—Ni1—O1Wiv 87.16 (13) C11—C12—H12 118.0
O1iv—Ni1—O1Wiv 92.84 (13) N2—C13—C14 123.1 (5)
N4i—Ni1—O1Wiv 91.01 (14) N2—C13—H13 118.4
N4v—Ni1—O1Wiv 88.99 (14) C14—C13—H13 118.4
O1W—Ni1—O1Wiv 180.00 (17) C13—C14—C10 119.4 (5)
O2—Tb1—O2W 82.73 (13) C13—C14—H14 120.3
O2—Tb1—O9ii 90.98 (13) C10—C14—H14 120.3
O2W—Tb1—O9ii 138.08 (13) C20—C15—C16 119.6 (4)
O2—Tb1—O7 81.89 (12) C20—C15—C21 117.5 (4)
O2W—Tb1—O7 139.50 (13) C16—C15—C21 122.8 (4)
O9ii—Tb1—O7 79.42 (11) C17—C16—C15 120.7 (4)
O2—Tb1—O4iii 154.16 (12) C17—C16—H16 119.7
O2W—Tb1—O4iii 120.54 (13) C15—C16—H16 119.7
O9ii—Tb1—O4iii 78.80 (13) C16—C17—C18 119.3 (4)
O7—Tb1—O4iii 72.98 (11) C16—C17—C22 123.0 (4)
O2—Tb1—O3iii 152.82 (12) C18—C17—C22 117.7 (4)
O2W—Tb1—O3iii 70.93 (12) C19—C18—C17 120.2 (4)
O9ii—Tb1—O3iii 103.96 (13) C19—C18—H18 119.9
O7—Tb1—O3iii 122.74 (11) C17—C18—H18 119.9
O4iii—Tb1—O3iii 52.81 (11) C18—C19—C20 119.8 (4)
O2—Tb1—O8ii 85.77 (12) C18—C19—N3 118.6 (4)
O2W—Tb1—O8ii 85.49 (13) C20—C19—N3 121.5 (4)
O9ii—Tb1—O8ii 52.66 (11) C15—C20—C19 120.3 (4)
O7—Tb1—O8ii 130.18 (10) C15—C20—H20 119.8
O4iii—Tb1—O8ii 105.78 (12) C19—C20—H20 119.8
O3iii—Tb1—O8ii 85.57 (12) O7—C21—O6 119.9 (4)
O2—Tb1—O6 84.52 (12) O7—C21—C15 119.5 (4)
O2W—Tb1—O6 88.54 (13) O6—C21—C15 120.6 (4)
O9ii—Tb1—O6 132.24 (11) O8—C22—O9 119.1 (4)
O7—Tb1—O6 52.86 (10) O8—C22—C17 120.7 (4)
O4iii—Tb1—O6 85.04 (12) O9—C22—C17 120.1 (4)
O3iii—Tb1—O6 101.01 (12) O8—C22—Tb1vii 62.0 (2)
O8ii—Tb1—O6 169.17 (11) O9—C22—Tb1vii 57.1 (2)
O2—Tb1—C7iii 178.33 (13) C17—C22—Tb1vii 176.4 (3)
O2W—Tb1—C7iii 96.05 (14) O10—C23—N3 123.5 (5)
O9ii—Tb1—C7iii 90.69 (14) O10—C23—C24 119.8 (5)
O7—Tb1—C7iii 98.38 (12) N3—C23—C24 116.6 (5)
O4iii—Tb1—C7iii 26.52 (12) C28—C24—C25 118.6 (5)
O3iii—Tb1—C7iii 26.32 (12) C28—C24—C23 118.2 (4)
O8ii—Tb1—C7iii 95.29 (12) C25—C24—C23 123.1 (5)
O6—Tb1—C7iii 94.32 (12) C26—C25—C24 117.9 (5)
O2—Tb1—C22ii 87.76 (13) C26—C25—H25 121.0
O2W—Tb1—C22ii 111.81 (15) C24—C25—H25 121.0
O9ii—Tb1—C22ii 26.29 (12) N4—C26—C25 124.0 (5)
O7—Tb1—C22ii 104.77 (12) N4—C26—H26 118.0
O4iii—Tb1—C22ii 92.83 (13) C25—C26—H26 118.0
O3iii—Tb1—C22ii 95.67 (13) N4—C27—C28 123.4 (5)
O8ii—Tb1—C22ii 26.37 (12) N4—C27—H27 118.3
O6—Tb1—C22ii 157.14 (13) C28—C27—H27 118.3
C7iii—Tb1—C22ii 93.76 (13) C27—C28—C24 119.4 (5)
C6—C1—C2 119.8 (4) C27—C28—H28 120.3
C6—C1—C8 119.5 (4) C24—C28—H28 120.3
C2—C1—C8 120.6 (4) C9—N1—C3 125.9 (4)
C3—C2—C1 120.4 (4) C9—N1—H1 117.1
C3—C2—H2 119.8 C3—N1—H1 117.1
C1—C2—H2 119.8 C13—N2—C12 117.1 (5)
C2—C3—C4 119.5 (4) C23—N3—C19 121.5 (4)
C2—C3—N1 118.9 (4) C23—N3—H3 119.3
C4—C3—N1 121.6 (4) C19—N3—H3 119.3
C5—C4—C3 119.5 (4) C26—N4—C27 116.7 (4)
C5—C4—H4 120.3 C26—N4—Ni1viii 121.8 (3)
C3—C4—H4 120.3 C27—N4—Ni1viii 121.1 (3)
C6—C5—C4 121.1 (4) C8—O1—Ni1 144.0 (3)
C6—C5—C7 121.0 (4) C8—O2—Tb1 154.9 (3)
C4—C5—C7 117.9 (4) C7—O3—Tb1vi 93.7 (3)
C5—C6—C1 119.6 (4) C7—O4—Tb1vi 94.2 (3)
C5—C6—H6 120.2 C21—O6—Tb1 91.1 (3)
C1—C6—H6 120.2 C21—O7—Tb1 96.0 (3)
O3—C7—O4 119.1 (4) C22—O8—Tb1vii 91.6 (3)
O3—C7—C5 120.9 (4) C22—O9—Tb1vii 96.6 (3)
O4—C7—C5 120.0 (4) Ni1—O1W—H1WB 117.5
O3—C7—Tb1vi 60.0 (2) Ni1—O1W—H1WA 109.4
O4—C7—Tb1vi 59.2 (2) H1WB—O1W—H1WA 118.0
C5—C7—Tb1vi 177.4 (3) Tb1—O2W—H2WA 122 (5)
O1—C8—O2 124.1 (4) Tb1—O2W—H2WB 111.0
O1—C8—C1 118.7 (4) H2WA—O2W—H2WB 127.1
O2—C8—C1 117.2 (4) H3WC—O3W—H3WD 108.6
O5—C9—N1 124.2 (5) H4WA—O4W—H4WB 107.8
C6—C1—C2—C3 −3.1 (7) O5—C9—N1—C3 4.3 (8)
C8—C1—C2—C3 173.3 (4) C10—C9—N1—C3 −175.7 (4)
C1—C2—C3—C4 3.2 (7) C2—C3—N1—C9 161.9 (5)
C1—C2—C3—N1 −176.9 (4) C4—C3—N1—C9 −18.2 (7)
C2—C3—C4—C5 −1.1 (7) C14—C13—N2—C12 −1.5 (8)
N1—C3—C4—C5 179.0 (4) C11—C12—N2—C13 1.0 (8)
C3—C4—C5—C6 −1.2 (7) O10—C23—N3—C19 5.8 (7)
C3—C4—C5—C7 −179.1 (4) C24—C23—N3—C19 −171.8 (4)
C4—C5—C6—C1 1.3 (7) C18—C19—N3—C23 133.0 (5)
C7—C5—C6—C1 179.2 (4) C20—C19—N3—C23 −45.5 (7)
C2—C1—C6—C5 0.8 (7) C25—C26—N4—C27 3.1 (7)
C8—C1—C6—C5 −175.6 (4) C25—C26—N4—Ni1viii −169.7 (4)
C6—C5—C7—O3 19.3 (7) C28—C27—N4—C26 −1.1 (7)
C4—C5—C7—O3 −162.8 (4) C28—C27—N4—Ni1viii 171.7 (4)
C6—C5—C7—O4 −159.6 (4) O2—C8—O1—Ni1 −119.0 (5)
C4—C5—C7—O4 18.3 (7) C1—C8—O1—Ni1 61.6 (7)
C6—C1—C8—O1 27.8 (7) N4i—Ni1—O1—C8 148.5 (6)
C2—C1—C8—O1 −148.5 (5) N4v—Ni1—O1—C8 −31.5 (6)
C6—C1—C8—O2 −151.7 (4) O1W—Ni1—O1—C8 −122.6 (6)
C2—C1—C8—O2 32.0 (7) O1Wiv—Ni1—O1—C8 57.4 (6)
O5—C9—C10—C11 −165.2 (5) O1—C8—O2—Tb1 74.5 (9)
N1—C9—C10—C11 14.7 (8) C1—C8—O2—Tb1 −106.0 (7)
O5—C9—C10—C14 12.0 (8) O2W—Tb1—O2—C8 −92.7 (8)
N1—C9—C10—C14 −168.1 (5) O9ii—Tb1—O2—C8 128.9 (8)
C14—C10—C11—C12 −1.1 (8) O7—Tb1—O2—C8 49.7 (7)
C9—C10—C11—C12 176.1 (5) O4iii—Tb1—O2—C8 63.1 (8)
C10—C11—C12—N2 0.3 (8) O3iii—Tb1—O2—C8 −107.0 (8)
N2—C13—C14—C10 0.7 (9) O8ii—Tb1—O2—C8 −178.7 (8)
C11—C10—C14—C13 0.6 (8) O6—Tb1—O2—C8 −3.5 (7)
C9—C10—C14—C13 −176.8 (5) C22ii—Tb1—O2—C8 154.9 (8)
C20—C15—C16—C17 1.6 (7) O4—C7—O3—Tb1vi −3.9 (5)
C21—C15—C16—C17 −178.7 (4) C5—C7—O3—Tb1vi 177.1 (4)
C15—C16—C17—C18 −1.7 (7) O3—C7—O4—Tb1vi 4.0 (5)
C15—C16—C17—C22 179.9 (4) C5—C7—O4—Tb1vi −177.1 (4)
C16—C17—C18—C19 −0.6 (7) O7—C21—O6—Tb1 −3.3 (4)
C22—C17—C18—C19 177.9 (4) C15—C21—O6—Tb1 177.3 (4)
C17—C18—C19—C20 3.0 (7) O2—Tb1—O6—C21 85.9 (3)
C17—C18—C19—N3 −175.6 (4) O2W—Tb1—O6—C21 168.7 (3)
C16—C15—C20—C19 0.9 (7) O9ii—Tb1—O6—C21 −0.5 (3)
C21—C15—C20—C19 −178.9 (4) O7—Tb1—O6—C21 1.9 (2)
C18—C19—C20—C15 −3.2 (7) O4iii—Tb1—O6—C21 −70.5 (3)
N3—C19—C20—C15 175.3 (4) O3iii—Tb1—O6—C21 −121.1 (3)
C20—C15—C21—O7 −5.5 (7) O8ii—Tb1—O6—C21 112.2 (6)
C16—C15—C21—O7 174.7 (4) C7iii—Tb1—O6—C21 −95.3 (3)
C20—C15—C21—O6 173.8 (4) C22ii—Tb1—O6—C21 15.1 (5)
C16—C15—C21—O6 −6.0 (7) O6—C21—O7—Tb1 3.5 (5)
C16—C17—C22—O8 13.6 (7) C15—C21—O7—Tb1 −177.2 (4)
C18—C17—C22—O8 −164.8 (4) O2—Tb1—O7—C21 −91.2 (3)
C16—C17—C22—O9 −167.3 (5) O2W—Tb1—O7—C21 −22.5 (4)
C18—C17—C22—O9 14.3 (7) O9ii—Tb1—O7—C21 176.3 (3)
O10—C23—C24—C28 −41.8 (7) O4iii—Tb1—O7—C21 94.9 (3)
N3—C23—C24—C28 136.0 (5) O3iii—Tb1—O7—C21 76.4 (3)
O10—C23—C24—C25 134.5 (5) O8ii—Tb1—O7—C21 −168.6 (3)
N3—C23—C24—C25 −47.8 (7) O6—Tb1—O7—C21 −1.9 (3)
C28—C24—C25—C26 −1.3 (7) C7iii—Tb1—O7—C21 87.1 (3)
C23—C24—C25—C26 −177.5 (4) C22ii—Tb1—O7—C21 −176.7 (3)
C24—C25—C26—N4 −1.9 (8) O9—C22—O8—Tb1vii −1.7 (5)
N4—C27—C28—C24 −2.0 (8) C17—C22—O8—Tb1vii 177.4 (4)
C25—C24—C28—C27 3.2 (7) O8—C22—O9—Tb1vii 1.8 (5)
C23—C24—C28—C27 179.5 (4) C17—C22—O9—Tb1vii −177.3 (4)

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iii) x, y−1, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y+1, −z+2; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x, y, z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4Wix 0.86 2.16 3.000 (6) 166
N3—H3···O4v 0.86 2.17 2.958 (6) 153
O1W—H1WA···O6iv 0.82 2.24 2.988 (4) 151
O1W—H1WB···O3Wx 0.85 2.04 2.763 (6) 143
O2W—H2WA···O3Wxi 0.85 (6) 2.47 (6) 3.117 (7) 134 (5)
O2W—H2WB···N2i 0.85 1.92 2.672 (6) 147
O3W—H3WC···O3x 0.85 1.92 2.736 (5) 159
O3W—H3WD···O8ii 0.85 1.98 2.793 (5) 160
O4W—H4WA···O9xii 0.85 2.25 3.088 (6) 170
O4W—H4WB···O9v 0.85 2.19 3.034 (5) 172

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y+1, −z+2; (ix) −x+1, −y+1, −z+2; (x) −x+1, −y+1, −z+1; (xi) −x+1, −y, −z+1; (xii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2627).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, M.-S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W.-Y. & Ueyama, N. (2011). Supramol. Chem. 23, 117–124.
  5. Deng, Y.-F., Chen, M.-S., Zhang, C.-H. & Kuang, D.-Z. (2011). Acta Cryst. E67, m1431–m1432. [DOI] [PMC free article] [PubMed]
  6. Gu, X.-J. & Xue, D.-F. (2006). Inorg. Chem. 45, 9257–9261. [DOI] [PubMed]
  7. Liang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307. [DOI] [PubMed]
  8. Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Zhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013. [DOI] [PubMed]
  11. Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813014876/hy2627sup1.cif

e-69-0m358-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014876/hy2627Isup2.hkl

e-69-0m358-Isup2.hkl (249.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES