Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 15;69(Pt 7):m393–m394. doi: 10.1107/S1600536813015857

μ3-Acetato-μ2-acetato-(di­methyl­form­amide)­penta­kis­(μ-N,2-dioxido­benzene-1-carboximidato)penta­kis­(1-methyl-1H-imidazole)­penta­manganese(III)manganese(II)–diethyl ether–di­methyl­formamide–methanol–water (1/1/1/1/0.49)

Benjamin R Tigyer a, Matthias Zeller b, Curtis M Zaleski a,*
PMCID: PMC3772425  PMID: 24046568

Abstract

The title compound, [Mn6(C7H4NO3)5(CH3CO2)2(C4H6N2)4.62(C3H7NO)1.38]·(C2H5)2O·C3H7NO·CH3OH·0.49H2O or MnII(OAc)2[15-MCMn(III)N(shi)-5](Me—Im)4.62(DMF)1.38·diethyl ether·DMF·MeOH·0.49H2O (where MC is metallacrown, OAc is acetate, shi3− is salicyl­hydroximate, Me—Im is 1-methyl­imidazole, DMF is N,N-di­methyl­formamide, and MeOH is methanol), is comprised of five MnIII ions in the metallacrown ring and an MnII ion which is encapsulated in the central cavity. Four of the ring MnIII ions are six-coordinate with distorted octa­hedral geometries. Two of these MnIII ions have a planar configuration, while the other two MnIII have Λ absolute stereoconfiguration. The fifth MnIII is five-coordinated with distorted square-pyramidal geometry. Four of the ring MnIII ions each bind one 1-methyl­imidazole, while the final ring MnIII ion binds a DMF solvent mol­ecule in an axial position and located in a trans position is either a Me—Im or a DMF mol­ecule. The occupancy ratio of Me—Im to DMF is 0.62 (2) to 0.38 (2). The central MnII is seven-coordinate with a geometry best described as distorted face-capped trigonal–prismatic. DMF, diethyl ether, MeOH, and water mol­ecules are located in the inter­stitial voids between the metallacrown mol­ecules. The methanol mol­ecule is positionally disordered [0.51 (1):0.49 (1)] and associated with a partially occupied water mol­ecule [0.49 (1)]. This disorder is also associated with the positional disorder of the diethyl ether mol­ecule [0.51 (1):0.49 (1)].

Related literature  

For a general review of metallacrowns, see: Mezei et al. (2007). For related manganese and vanadium metallacrown structures, see: Lah & Pecoraro (1989) and Pecoraro (1989), respectively. For related Mn(II)[15-MCMn(III)N(shi)-5)] structures and synthetic procedures, see: Kessissoglou et al. (1994), Dendrinou-Samara et al. (2001, 2002, 2005); Emerich et al. (2010); Tigyer et al. (2011, 2012). For an explanation on how to calculate the s/h ratio, see: Stiefel & Brown (1972). For an explanation on how to calculate bond-valence-sum values, see: Liu & Thorp (1993). For an explanation on how to calculate the τ asymmetry parameter, see: Addison et al. (1984). For CELL_NOW software, see: Sheldrick (2008b ). graphic file with name e-69-0m393-scheme1.jpg

Experimental  

Crystal data  

  • [Mn6(C7H4NO3)5(C2H3O2)2(C4H6N2)4.62(C3H7NO)1.38]·C4H10O·C3H7NO·CH4O·0.49H2O

  • M r = 1866.61

  • Triclinic, Inline graphic

  • a = 12.4181 (8) Å

  • b = 17.0108 (11) Å

  • c = 20.6627 (13) Å

  • α = 102.166 (4)°

  • β = 96.726 (4)°

  • γ = 107.496 (4)°

  • V = 3992.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 K

  • 0.30 × 0.23 × 0.15 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) T min = 0.544, T max = 0.747

  • 56608 measured reflections

  • 18890 independent reflections

  • 13018 reflections with I > 2σ(I)

  • R int = 0.134

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.087

  • wR(F 2) = 0.232

  • S = 1.04

  • 18890 reflections

  • 1146 parameters

  • 93 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a ); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008a ) and SHELXLE Rev600 (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813015857/jj2164sup1.cif

e-69-0m393-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015857/jj2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was funded by the Shippensburg University Foundation (grant No. UGR2012/13–08) to BRT and CMZ. The diffractometer was funded by NSF grant No. 0087210, by Ohio Board of Regents grant No. CAP-491, and by YSU. The authors would like to thank Professor George M. Sheldrick for providing access to the beta version of SHELXL2012 prior to its official release.

supplementary crystallographic information

Comment

Metallacrowns were first recognized in 1989 by Pecoraro, and since then they have proven to be a versatile class of inorganic compounds (Pecoraro, 1989; Mezei et al., 2007). They have served as building blocks for 1-, 2-, and three-dimensional solids, displayed interesting relaxivity behavior, and served as selective-anion hosts (Mezei et al., 2007). In addition, the manganese-based 15-MC-5 compounds have shown enhanced antimicrobial properties compared to simple Mn-herbicide compounds (Kessissoglou et al., 1994; Dendrinou-Samara et al., 2001, 2002, 2005). These initial manganese-based 15-MC-5 compounds where made using pyridine to complete the coordination of the ring MnIII ions. However, recently it has been shown that imidazole and its derivatives can also be readily used to produce a manganese 15-MC-5 compound (Emerich et al., 2010; Tigyer et al. 2011, 2012).

Herein we report the synthesis, IR data, and single-crystal X-ray structure of the title compound [Mn6(C7H4NO3)5(C2H3O2)2(C4H6N2)4.62(C3H7NO)1.38].(C2H5)2O.C3H7NO.CH3OH.0.49H2O, 1, abbreviated as Mn(II)(OAc)2[15-MCMn(III)N(shi)-5](Me—Im)4.62(DMF)1.38.diethyl ether.DMF.MeOH.0.49H2O (where MC is metallacrown, -OAc is acetate, shi3- is salicylhydroximate, Me—Im is 1-methylimidazole, DMF is N,N-dimethylformamide, and MeOH is methanol). The molecule is nonplanar, which is typical of manganese-based 15-MC-5 complexes (Fig. 1). The MC framework of the molecule is comprised five shi3- ligands and five MnIII ions, which combine to form a -[MnIII—N—O]5– repeat unit. A MnII ion is captured in the central cavity of the MC and the MnII ion is tethered to the MC ring via two acetate ligands. Charge neutrality in the molecule is maintained by the five MnIII and one MnII cations and five shi3- and two acetate ligands.

Mn1 is located in the central cavity and is seven-coordinate with distorted face-capped trigonal prismatic geometry (Fig. 2). The geometry assignment is supported by both the calculated azimuthal angle (Φ) and the s/h ratio (Stiefel & Brown, 1972). These parameters can be used to distinguish an ideal trigonal prism and octahedron. In an ideal trigonal prism the angle between the atoms on opposite triangular faces is Φ = 0°, and the s/h ratio is 1.00. In an ideal octahedron the azimuthal angle equals 60°, and the s/h ratio is 1.22. To calculate these parameters the centroids of opposite triangular faces made by the donor oxygen atoms (O6, O9, and O18; O12, O15, and O16) were defined using the program Mercury (Fig. 3; Macrae et al., 2006). The azimuthal angles were measured between atoms on opposite faces through the centroids. To calculate the s/h ratio, the distance between the centroids was defined as h, and the distances between atoms on the same triangular face were defined as s. For Mn1 the Φ angles are 8.13°, 12.33°, and 15.98°, and the estimated average s/h ratio is 1.01±0.11. Thus, both the Φ angle and s/h parameters support a distorted faced-capped trigonal prismatic geometry. Mn1 is assigned a 2+ oxidation state which is supported by an average bond distance of 2.24 Å and a Bond Valence Sum (BVS) calculation of 1.92 (Liu & Thorp, 1993).

The ring Mn2 - Mn6 ions have various coordination modes and configurations (Fig. 4). Mn2 is five-coordinate (Fig. 4a) with distorted square pyramidal geometry. To evaluate the geometry about Mn2 the τ parameter was calculated (Addison et al., 1984). For an ideal square pyramidal geometry τ = 0, while for an ideal trigonal bipyramidal geometry τ = 1. For Mn2 τ is 0.21. Mn3 - Mn 6 are six-coordinate with distorted octahedral geometry. In addition, the coordination about these Mn can be described by their configurations. Mn3 (Fig. 4 b) and Mn6 (Fig. 4 e) have a propeller configuration of two chelate rings of different shi3- ligands with Λ absolute stereochemistry. Mn4 (Fig. 4c) and Mn5 (Fig. 4 d) adopt a planar (P) configuration, where two chelate rings of different shi3- ligands are located trans to each other. In addition, Mn2, Mn3, Mn5, and Mn6 each bind one 1-methylimidazole ligand, which is directed to the periphery of the metallacrown. Mn4 binds one DMF molecule in an axial position and located in a trans position is either a 1-methylimidazole or a DMF. The occupancy ratio of 1-methylimidazole to DMF is 0.62 (2) to 0.38 (2). Mn2 - Mn6 are assigned a 3+ oxidation state, which is supported by the average bond distances and BVS calculations. The average Mn-N/O bond distances for Mn2, Mn3, Mn4, Mn5, and Mn6 are 1.98 Å, 2.04 Å, 2.06 Å, 2.04 Å, and 2.05 Å, respectively, and the BVS calculations are 2.99, 3.09, 3.04, 3.11, and 3.09, respectively. In addition, Mn3 - Mn6 possess a Jahn-Teller axis, which is typical for high spin d4 MnIII ions.

Lastly DMF, diethyl ether, methanol, and water molecules are located in the interstitial voids between the metallacrown molecules. The methanol molecule is positional disordered [0.51 (1):0.49 (1)] and associated with a partially occupied water molecule [0.49 (1)]. This disorder is also associated with the positional disorder of the diethyl ether molecule [0.51 (1):0.49 (1)].

Experimental

Manganese(II) acetate tetrahydrate (99+%) was purchased from Acros Organics. Salicylhydroxamic acid (H3shi, 99%) and 1-methylimidazole (99%) were purchased from Alfa Aesar. Methanol (HPLC grade) was purchased from Pharmco-AAPer. N,N-dimethylformamide (Certified ACS grade) was purchased from BDH chemicals. Absolute diethyl ether was purchased from EMD Chemicals. All reagents were used as received and without further purification.

The compound {Mn(II)(OAc)2[12-MCMn(III)N(shi)-4](DMF)6.2DMF was prepared as previously reported (Lah & Pecoraro, 1989). Dark brown/black crystals were isolated and dried. Then the {Mn(II)(OAc)2[12-MCMn(III)N(shi)-4](DMF)6.2DMF compound (0.1 mmol) was dissolved in 20 ml of a 75:25 solution of DMF and methanol resulting in a dark brown solution. Following 25 µL of 1-methylimidazole was added and no change was observed. This solution was stirred for 5 minutes. Diffusion of diethyl ether into the solution at room temperature resulted in small black platelets suitable for X-ray analysis after 8 days. The percent yield was 6.8% based on {Mn(II)(OAc)2[12-MCMn(III)N(shi)-4](DMF)6.2DMF.

Elemental analysis for the dried material (accounting for the loss of the diethyl ether lattice solvent) C65.62H75.36Mn6N16.62O22.87 [FW = 1792.43 g/mol] found % (calculated); C 44.30 (43.97); H 4.10 (4.24); N 13.34 (12.99).

Refinement

The crystals under investigation were heavily intergrown and fragile and no single piece sufficiently large for XRD analysis could be obtained. Attempts to obtain single pieces from larger fragments through careful cutting were not successful due to the dark colour and fragility of the crystallites. Instead a sufficiently large fragment with three larger and a number of smaller moieties was chosen for analysis. The orientation matrices for the three largest moieties were identified using the program CELL_NOW (Sheldrick, 2008b) with the three components being not related by any obvious twin operations. The three components were integrated using SAINT (Bruker, 2012) resulting in the following statistics:

54454 data (16586 unique) involve domain 1 only, mean I/sigma 3.4

23789 data (11631 unique) involve domain 2 only, mean I/sigma 2.6

24251 data (11600 unique) involve domain 3 only, mean I/sigma 1.7

41797 data (20117 unique) involve 2 domains, mean I/sigma 3.0

25039 data (10789 unique) involve 3 domains, mean I/sigma 3.1

8 data (8 unique) involve 4 domains, mean I/sigma 1.2

The exact twin matrices identified by the integration program were found to be:

Matrix 1 → Matrix 2

0.96554 - 0.07897 0.03223

0.17039 1.03400 0.01296

-0.14548 - 0.01729 0.98326

Matrix 1 → Matrix 3

0.97038 - 0.06968 0.02764

0.16471 1.04753 0.07915

-0.18744 - 0.12396 0.95778

Matrix 2 → Matrix 3

1.00268 0.00911 - 0.00488

0.00169 1.01434 0.06707

-0.02835 - 0.10572 0.97641

The data were corrected for absorption using TWINABS (Sheldrick, 2009), and the structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones) with a resolution better than 0.8 Å, resulting in BASF values of 0.301 (2) and 0.167 (2).

The total number of reflections given (_diffrn_reflns_number) is before the cutoff at 0.8 Å. The Rint value (_diffrn_reflns_av_R_equivalents) given is for these reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions before the cutoff at 0.8 Å (TWINABS).

One of the coordinated 1-methylimidazole ligands is partially replaced by a DMF molecule. Overlapping atoms were constrained to have identical ADPs and to be close to isotropic. The DMF molecule was restrained to have a geometry similar to that of another not disordered DMF molecule. The occupancy ratio refined to 0.61983 (2000) to 0.38017 (2000) in favor of the 1-methylimidazole molecule.

A methanol molecule is positional disordered with one of the molecules associated with a partially occupied water molecule. The disorder is associated with disorder of a diethyl ether molecule. Occupancy ratios of all three solvent molecules refined to essentially 1:1 (0.50926 (1100) to 0.49074 (1100)). The oxygen and carbon atoms of the methanol and water molecules were restrained to have similar ADPs (SIMU restraint in Shexltl).

Reflections 0 0 1 and 1 - 1 1 were obstructed by the beam stop and were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Single-crystal X-ray structure of Mn(II)(OAc)2[15-MCMn(III)N(shi)-5](Me—Im)4.62(DMF)1.38.diethyl ether.DMF.MeOH.0.49H2O (1). The thermal ellipsoid plot of 1 is at a 50% probability level. For Mn4 only the 1-methylimidazole is shown bound to the MnIII, since 1-methylimidazole possess a higher occupancy ratio compared to the coordinated DMF (0.62 (2):0.38 (2)). Hydrogen atoms and the lattice solvent molecules have been omitted for clarity. Color scheme for all figures: green - MnII and MnIII, red - oxygen, blue - nitrogen, and gray - carbon.

Fig. 2.

Fig. 2.

Side (a) and top (b) views of the first coordination sphere about Mn1 (2+ oxidation state) of 1. The thermal ellipsoid plots are at a 50% probability level.

Fig. 3.

Fig. 3.

Side (a) and top (b) views of the first coordination sphere about Mn1 of 1 demonstrating how the azimuthal anlge (Φ) was defined and calculated using the program Mercury (Macrae et al., 2006). The thermal ellipsoid plots are at a 50% probability level.

Fig. 4.

Fig. 4.

First coordination sphere about each MnIII ion of 1. a) Mn2 with distorted square pyramidal geometry b) Mn3 with Λ configuration c) Mn4 with planar configuration and 1-methylimidazole bound (0.62 (2) occupancy) d) Mn4 with planar configuration and DMF bound (0.38 (2) occupancy) e) Mn5 with planar configuration and f) Mn6 with Λ configuration. The thermal ellipsoid plots are at a 50% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

[Mn6(C7H4NO3)5(C2H3O2)2(C4H6N2)4.62(C3H7NO)1.38]·C4H10O·C3H7NO·CH4O·0.49H2O Z = 2
Mr = 1866.61 F(000) = 1920.8
Triclinic, P1 Dx = 1.552 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 12.4181 (8) Å Cell parameters from 9924 reflections
b = 17.0108 (11) Å θ = 2.2–27.6°
c = 20.6627 (13) Å µ = 1.01 mm1
α = 102.166 (4)° T = 100 K
β = 96.726 (4)° Plate, black
γ = 107.496 (4)° 0.30 × 0.23 × 0.15 mm
V = 3992.4 (5) Å3

Data collection

Bruker SMART APEX CCD diffractometer 13018 reflections with I > 2σ(I)
Radiation source: fine focus sealed tube Rint = 0.134
ω and phi scans θmax = 26.4°, θmin = 1.3°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) h = −15→15
Tmin = 0.544, Tmax = 0.747 k = −21→20
56608 measured reflections l = 0→25
18890 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087 Hydrogen site location: difference Fourier map
wR(F2) = 0.232 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0741P)2 + 15.4132P] where P = (Fo2 + 2Fc2)/3
18890 reflections (Δ/σ)max < 0.001
1146 parameters Δρmax = 1.07 e Å3
93 restraints Δρmin = −1.08 e Å3

Special details

Experimental. Di-µ-aceto-mono(dimethylformamide)pentakis(µ-N,2-dioxidobenzene-1-carboximidato)pentakis(1-methylimidazole)pentamanganese(III)manganese(II)–diethyl ether-dimethylformamide-methanol-water (1/1/1/0.49)FT–IR bands (KBr pellet, cm-1): 1669, 1653, 1598, 1570, 1500, 1437, 1421, 1389, 1320, 1258, 1243, 1146, 1102, 1033, 1025, 954, 926, 865, 753, 681, 669, 653, 616, 595, 577, 486, 469, 418, and 404.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles, and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.56026 (9) 0.25912 (7) 0.23833 (5) 0.0193 (3)
Mn2 0.58160 (10) 0.32031 (7) 0.40739 (6) 0.0229 (3)
Mn3 0.57536 (10) 0.06313 (7) 0.27180 (6) 0.0220 (3)
Mn4 0.79276 (10) 0.23709 (8) 0.15153 (6) 0.0248 (3)
Mn5 0.60155 (10) 0.43514 (8) 0.17163 (6) 0.0225 (3)
Mn6 0.28559 (9) 0.25305 (8) 0.22500 (6) 0.0215 (3)
O1 0.6762 (5) 0.3379 (4) 0.4890 (3) 0.0313 (14)
O2 0.6924 (5) 0.1096 (3) 0.3655 (3) 0.0267 (13)
O3 0.5555 (4) 0.1697 (3) 0.3059 (2) 0.0241 (12)
O4 0.6034 (5) −0.0397 (3) 0.2429 (3) 0.0268 (13)
O5 0.8200 (4) 0.1295 (3) 0.1493 (3) 0.0231 (12)
O6 0.6780 (4) 0.1918 (3) 0.2005 (2) 0.0227 (12)
O7 0.9041 (5) 0.2796 (4) 0.1026 (3) 0.0319 (14)
O8 0.7492 (5) 0.4685 (3) 0.1438 (3) 0.0276 (13)
O9 0.6274 (4) 0.3267 (3) 0.1616 (2) 0.0223 (12)
O10 0.5824 (5) 0.5419 (4) 0.1828 (3) 0.0273 (13)
O11 0.2929 (5) 0.3835 (4) 0.2420 (3) 0.0279 (13)
O12 0.4229 (4) 0.3040 (3) 0.1939 (2) 0.0201 (11)
O13 0.1525 (4) 0.1935 (4) 0.2509 (2) 0.0266 (13)
O14 0.4137 (4) 0.2615 (3) 0.4247 (2) 0.0250 (12)
O15 0.4878 (4) 0.3109 (3) 0.3253 (2) 0.0232 (12)
O16 0.3855 (4) 0.1555 (3) 0.1950 (2) 0.0262 (12)
O17 0.4274 (5) 0.0358 (3) 0.1872 (3) 0.0278 (13)
O18 0.6999 (4) 0.3596 (3) 0.3154 (3) 0.0249 (12)
O19 0.7094 (5) 0.4754 (4) 0.2770 (3) 0.0287 (13)
O21 1.0082 (8) 0.7575 (6) 0.1173 (4) 0.077 (3)
N1 0.6115 (5) 0.2131 (4) 0.3736 (3) 0.0217 (14)
N2 0.6810 (5) 0.1129 (4) 0.2135 (3) 0.0236 (14)
N3 0.7409 (5) 0.3353 (4) 0.1536 (3) 0.0243 (15)
N4 0.4572 (5) 0.3925 (4) 0.2015 (3) 0.0193 (13)
N5 0.3687 (5) 0.2698 (4) 0.3167 (3) 0.0209 (14)
N6 0.5978 (5) 0.4465 (4) 0.4367 (3) 0.0266 (15)
N7 0.5869 (6) 0.5728 (4) 0.4346 (3) 0.0285 (16)
N8 0.4444 (6) 0.0020 (4) 0.3156 (3) 0.0278 (16)
N9 0.2710 (6) −0.0377 (5) 0.3401 (4) 0.0333 (18)
N12 0.5058 (6) 0.3922 (4) 0.0623 (3) 0.0261 (15)
N13 0.3696 (6) 0.3739 (5) −0.0245 (4) 0.0350 (18)
N14 0.1925 (5) 0.2156 (4) 0.1289 (3) 0.0222 (14)
N15 0.0488 (5) 0.1584 (4) 0.0433 (3) 0.0277 (16)
N17 1.1778 (9) 0.7400 (6) 0.0974 (5) 0.055 (2)
C1 0.7412 (7) 0.2946 (5) 0.5097 (4) 0.0273 (18)
C2 0.8089 (7) 0.3292 (6) 0.5748 (4) 0.033 (2)
H2 0.8052 0.3805 0.6021 0.040*
C3 0.8807 (8) 0.2901 (6) 0.6000 (5) 0.039 (2)
H3 0.9275 0.3149 0.6438 0.046*
C4 0.8839 (7) 0.2147 (6) 0.5611 (4) 0.036 (2)
H4 0.9330 0.1874 0.5783 0.044*
C5 0.8169 (7) 0.1785 (6) 0.4979 (4) 0.030 (2)
H5 0.8186 0.1257 0.4723 0.036*
C6 0.7465 (7) 0.2181 (5) 0.4705 (4) 0.0272 (18)
C7 0.6808 (6) 0.1773 (5) 0.4001 (4) 0.0244 (17)
C8 0.6933 (7) −0.0526 (5) 0.2201 (4) 0.0218 (17)
C9 0.7137 (7) −0.1284 (5) 0.2253 (4) 0.0277 (19)
H9 0.6648 −0.1667 0.2454 0.033*
C10 0.8059 (8) −0.1473 (5) 0.2007 (4) 0.031 (2)
H10 0.8187 −0.1988 0.2042 0.037*
C11 0.8785 (7) −0.0923 (5) 0.1716 (4) 0.031 (2)
H11 0.9408 −0.1058 0.1552 0.037*
C12 0.8599 (7) −0.0184 (5) 0.1666 (4) 0.0256 (18)
H12 0.9101 0.0190 0.1464 0.031*
C13 0.7674 (7) 0.0042 (5) 0.1907 (4) 0.0256 (18)
C14 0.7568 (6) 0.0855 (5) 0.1844 (4) 0.0215 (16)
C15 0.9623 (7) 0.3627 (5) 0.1109 (4) 0.0240 (17)
C16 1.0757 (7) 0.3848 (6) 0.0985 (5) 0.036 (2)
H16 1.1086 0.3418 0.0847 0.043*
C17 1.1388 (8) 0.4704 (6) 0.1067 (5) 0.040 (2)
H17 1.2154 0.4856 0.0989 0.047*
C18 1.0924 (8) 0.5327 (6) 0.1258 (6) 0.046 (3)
H18 1.1366 0.5908 0.1314 0.055*
C19 0.9814 (8) 0.5116 (6) 0.1371 (5) 0.037 (2)
H19 0.9492 0.5553 0.1500 0.045*
C20 0.9156 (7) 0.4264 (5) 0.1299 (4) 0.0264 (18)
C21 0.7958 (7) 0.4102 (5) 0.1423 (4) 0.0265 (18)
C22 0.5060 (7) 0.5713 (5) 0.2107 (4) 0.0286 (19)
C23 0.5196 (8) 0.6574 (5) 0.2185 (5) 0.036 (2)
H23 0.5829 0.6921 0.2042 0.044*
C24 0.4455 (8) 0.6936 (6) 0.2458 (5) 0.041 (2)
H24 0.4584 0.7527 0.2507 0.050*
C25 0.3511 (8) 0.6445 (6) 0.2665 (5) 0.038 (2)
H25 0.2998 0.6698 0.2858 0.046*
C26 0.3327 (8) 0.5587 (6) 0.2587 (4) 0.033 (2)
H26 0.2671 0.5248 0.2717 0.040*
C27 0.4097 (7) 0.5201 (5) 0.2316 (4) 0.0271 (19)
C28 0.3839 (7) 0.4280 (5) 0.2256 (4) 0.0266 (18)
C29 0.1312 (7) 0.1794 (5) 0.3100 (4) 0.0247 (18)
C30 0.0158 (7) 0.1417 (6) 0.3126 (4) 0.032 (2)
H30 −0.0420 0.1291 0.2738 0.038*
C31 −0.0157 (7) 0.1224 (6) 0.3711 (4) 0.032 (2)
H31 −0.0944 0.0962 0.3721 0.039*
C32 0.0687 (8) 0.1416 (6) 0.4288 (4) 0.039 (2)
H32 0.0474 0.1284 0.4689 0.046*
C33 0.1825 (7) 0.1797 (6) 0.4270 (4) 0.031 (2)
H33 0.2400 0.1918 0.4658 0.038*
C34 0.2143 (7) 0.2008 (5) 0.3685 (4) 0.0253 (18)
C35 0.3384 (6) 0.2455 (5) 0.3703 (4) 0.0224 (17)
C36 0.3540 (8) 0.0246 (6) 0.3266 (4) 0.033 (2)
H36 0.3484 0.0787 0.3252 0.040*
C37 0.4177 (9) −0.0790 (6) 0.3249 (5) 0.039 (2)
H37 0.4670 −0.1123 0.3215 0.047*
C38 0.3104 (9) −0.1046 (6) 0.3395 (5) 0.043 (3)
H38 0.2713 −0.1578 0.3476 0.051*
C39 0.1575 (8) −0.0355 (7) 0.3518 (6) 0.046 (3)
H39A 0.1457 0.0152 0.3412 0.070*
H39B 0.1533 −0.0333 0.3991 0.070*
H39C 0.0976 −0.0868 0.3227 0.070*
C44 0.4266 (7) 0.4216 (6) 0.0375 (4) 0.032 (2)
H44 0.4119 0.4705 0.0609 0.039*
C45 0.4990 (8) 0.3220 (6) 0.0108 (4) 0.038 (2)
H45 0.5459 0.2873 0.0125 0.045*
C46 0.4142 (9) 0.3109 (7) −0.0423 (5) 0.043 (2)
H46 0.3912 0.2676 −0.0835 0.051*
C47 0.2743 (9) 0.3887 (7) −0.0654 (5) 0.049 (3)
H47A 0.2928 0.3932 −0.1095 0.074*
H47B 0.2644 0.4418 −0.0420 0.074*
H47C 0.2028 0.3410 −0.0715 0.074*
C48 0.0787 (6) 0.1769 (5) 0.1098 (4) 0.0254 (18)
H48 0.0268 0.1646 0.1396 0.030*
C49 0.2341 (6) 0.2238 (5) 0.0704 (4) 0.0253 (18)
H49 0.3120 0.2503 0.0677 0.030*
C50 0.1447 (8) 0.1875 (6) 0.0180 (4) 0.037 (2)
H50 0.1481 0.1832 −0.0282 0.044*
C51 −0.0700 (7) 0.1133 (6) 0.0044 (4) 0.035 (2)
H51A −0.1240 0.1078 0.0355 0.053*
H51B −0.0758 0.0565 −0.0217 0.053*
H51C −0.0888 0.1460 −0.0265 0.053*
C52 0.5556 (7) 0.4904 (5) 0.4005 (4) 0.0287 (18)
H52 0.5096 0.4666 0.3565 0.034*
C53 0.6594 (7) 0.5046 (5) 0.4962 (4) 0.033 (2)
H53 0.7000 0.4921 0.5324 0.040*
C54 0.6531 (7) 0.5821 (5) 0.4953 (4) 0.034 (2)
H54 0.6879 0.6334 0.5301 0.041*
C55 0.5553 (11) 0.6383 (6) 0.4112 (5) 0.051 (3)
H55A 0.6230 0.6901 0.4213 0.077*
H55B 0.4952 0.6510 0.4339 0.077*
H55C 0.5264 0.6185 0.3623 0.077*
C56 0.3561 (6) 0.0741 (5) 0.1823 (4) 0.0237 (17)
C57 0.2298 (7) 0.0248 (5) 0.1627 (5) 0.035 (2)
H57A 0.1966 0.0393 0.1233 0.052*
H57B 0.1920 0.0394 0.2004 0.052*
H57C 0.2180 −0.0365 0.1516 0.052*
C58 0.7437 (7) 0.4380 (5) 0.3170 (4) 0.0276 (19)
C59 0.8493 (8) 0.4901 (6) 0.3721 (5) 0.040 (2)
H59A 0.9188 0.4980 0.3526 0.060*
H59B 0.8535 0.4597 0.4072 0.060*
H59C 0.8434 0.5459 0.3919 0.060*
C63 1.0639 (11) 0.7248 (8) 0.0824 (6) 0.058 (3)
H63 1.0231 0.6850 0.0408 0.070*
C64 1.2447 (11) 0.7980 (8) 0.1637 (6) 0.064 (3)
H64A 1.2936 0.7710 0.1848 0.096*
H64B 1.1916 0.8094 0.1930 0.096*
H64C 1.2929 0.8518 0.1569 0.096*
C65 1.2376 (12) 0.7004 (9) 0.0527 (7) 0.077 (4)
H65A 1.1816 0.6534 0.0171 0.115*
H65B 1.2881 0.6783 0.0781 0.115*
H65C 1.2838 0.7426 0.0322 0.115*
O20 0.6594 (5) 0.1644 (4) 0.0531 (3) 0.0323 (14)
C60 0.5545 (7) 0.1347 (5) 0.0516 (4) 0.032 (2)
H60 0.5291 0.1407 0.0934 0.038*
N16 0.4749 (6) 0.0948 (4) −0.0048 (3) 0.0290 (16)
C61 0.5092 (8) 0.0841 (7) −0.0693 (5) 0.050 (3)
H61A 0.4738 0.0243 −0.0953 0.076*
H61B 0.5932 0.1000 −0.0626 0.076*
H61C 0.4840 0.1207 −0.0941 0.076*
C62 0.3540 (7) 0.0622 (7) −0.0048 (5) 0.046 (3)
H62A 0.3124 0.0864 −0.0340 0.069*
H62B 0.3409 0.0782 0.0413 0.069*
H62C 0.3262 −0.0001 −0.0215 0.069*
N10 0.926 (2) 0.2986 (16) 0.2537 (10) 0.018 (4) 0.61983 (2000)
C40 0.9050 (18) 0.298 (2) 0.3148 (9) 0.026 (4) 0.61983 (2000)
H40 0.8322 0.2711 0.3245 0.031* 0.61983 (2000)
C41 1.0418 (11) 0.3449 (9) 0.2625 (7) 0.032 (3) 0.61983 (2000)
H41 1.0806 0.3584 0.2272 0.038* 0.61983 (2000)
C42 1.0926 (18) 0.3686 (12) 0.3292 (11) 0.031 (4) 0.61983 (2000)
H42 1.1719 0.3964 0.3488 0.037* 0.61983 (2000)
N11 1.0021 (17) 0.3431 (17) 0.3619 (9) 0.032 (3) 0.61983 (2000)
C43 1.012 (3) 0.352 (3) 0.4357 (11) 0.036 (4) 0.61983 (2000)
H43A 0.9349 0.3336 0.4463 0.055* 0.61983 (2000)
H43B 1.0529 0.4115 0.4602 0.055* 0.61983 (2000)
H43C 1.0547 0.3160 0.4491 0.055* 0.61983 (2000)
O22 0.919 (3) 0.304 (2) 0.2376 (13) 0.024 (7) 0.38017 (2000)
C40B 0.918 (3) 0.303 (3) 0.2977 (15) 0.026 (4) 0.38017 (2000)
H40B 0.8482 0.2713 0.3083 0.031* 0.38017 (2000)
N11B 1.009 (3) 0.343 (3) 0.3485 (12) 0.032 (3) 0.38017 (2000)
C42B 1.113 (3) 0.398 (2) 0.3362 (19) 0.031 (4) 0.38017 (2000)
H42A 1.1787 0.3837 0.3544 0.037* 0.38017 (2000)
H42B 1.1227 0.4574 0.3583 0.037* 0.38017 (2000)
H42C 1.1076 0.3912 0.2875 0.037* 0.38017 (2000)
C43B 1.007 (6) 0.343 (5) 0.4180 (15) 0.036 (4) 0.38017 (2000)
H43D 0.9357 0.3002 0.4208 0.055* 0.38017 (2000)
H43E 1.0116 0.3994 0.4436 0.055* 0.38017 (2000)
H43F 1.0732 0.3287 0.4367 0.055* 0.38017 (2000)
C67 0.524 (2) 0.885 (2) 0.4934 (15) 0.056 (9) 0.50926 (1100)
H67A 0.5447 0.8590 0.5288 0.084* 0.50926 (1100)
H67B 0.4699 0.8405 0.4553 0.084* 0.50926 (1100)
H67C 0.4871 0.9263 0.5114 0.084* 0.50926 (1100)
C68 0.632 (4) 0.931 (2) 0.470 (4) 0.070 (6) 0.50926 (1100)
H68A 0.6130 0.9652 0.4399 0.083* 0.50926 (1100)
H68B 0.6907 0.9695 0.5091 0.083* 0.50926 (1100)
O23 0.6761 (11) 0.8707 (9) 0.4341 (7) 0.042 (4) 0.50926 (1100)
C69 0.779 (2) 0.9130 (19) 0.4118 (13) 0.049 (5) 0.50926 (1100)
H69A 0.8372 0.9545 0.4504 0.059* 0.50926 (1100)
H69B 0.7610 0.9435 0.3784 0.059* 0.50926 (1100)
C70 0.823 (2) 0.8415 (19) 0.3795 (12) 0.072 (8) 0.50926 (1100)
H70A 0.7729 0.8086 0.3359 0.108* 0.50926 (1100)
H70B 0.8232 0.8037 0.4093 0.108* 0.50926 (1100)
H70C 0.9017 0.8668 0.3727 0.108* 0.50926 (1100)
C67B 0.527 (2) 0.862 (2) 0.4667 (16) 0.059 (9) 0.49074 (1100)
H67D 0.5568 0.8294 0.4938 0.089* 0.49074 (1100)
H67E 0.5090 0.8312 0.4189 0.089* 0.49074 (1100)
H67F 0.4572 0.8692 0.4808 0.089* 0.49074 (1100)
C68B 0.618 (4) 0.949 (2) 0.477 (4) 0.070 (6) 0.49074 (1100)
H68C 0.5947 0.9773 0.4431 0.083* 0.49074 (1100)
H68D 0.6219 0.9855 0.5224 0.083* 0.49074 (1100)
O23B 0.7272 (15) 0.9433 (12) 0.4718 (7) 0.063 (5) 0.49074 (1100)
C69B 0.741 (2) 0.920 (2) 0.4032 (12) 0.049 (5) 0.49074 (1100)
H69C 0.7267 0.9614 0.3789 0.059* 0.49074 (1100)
H69D 0.6857 0.8625 0.3796 0.059* 0.49074 (1100)
C70B 0.8652 (18) 0.9207 (19) 0.4061 (11) 0.062 (8) 0.49074 (1100)
H70D 0.8836 0.8909 0.4394 0.092* 0.49074 (1100)
H70E 0.9178 0.9798 0.4192 0.092* 0.49074 (1100)
H70F 0.8735 0.8917 0.3616 0.092* 0.49074 (1100)
O24 1.033 (2) 0.7637 (18) 0.2477 (12) 0.069 (5) 0.49074 (1100)
H24A 0.98 (2) 0.716 (6) 0.246 (14) 0.104* 0.49074 (1100)
H24B 1.066 (5) 0.769 (19) 0.215 (3) 0.104* 0.49074 (1100)
O25 0.8511 (16) 0.6404 (11) 0.2802 (10) 0.057 (5) 0.49074 (1100)
H25A 0.8459 0.5927 0.2873 0.085* 0.49074 (1100)
C72 0.8032 (19) 0.6824 (14) 0.3257 (10) 0.050 (6) 0.49074 (1100)
H72A 0.8101 0.7384 0.3179 0.075* 0.49074 (1100)
H72B 0.8432 0.6899 0.3715 0.075* 0.49074 (1100)
H72C 0.7217 0.6492 0.3205 0.075* 0.49074 (1100)
C71 0.880 (2) 0.6747 (14) 0.2613 (11) 0.046 (6) 0.50926 (1100)
H71A 0.8977 0.6216 0.2546 0.069* 0.50926 (1100)
H71B 0.8191 0.6695 0.2241 0.069* 0.50926 (1100)
H71C 0.8529 0.6855 0.3041 0.069* 0.50926 (1100)
O26 0.980 (2) 0.7439 (17) 0.2632 (12) 0.069 (5) 0.50926 (1100)
H26A 0.9827 0.7503 0.2241 0.104* 0.50926 (1100)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0181 (6) 0.0201 (6) 0.0178 (6) 0.0066 (5) 0.0045 (4) 0.0000 (4)
Mn2 0.0220 (6) 0.0225 (6) 0.0200 (6) 0.0084 (5) 0.0012 (5) −0.0033 (5)
Mn3 0.0233 (6) 0.0202 (6) 0.0210 (6) 0.0079 (5) 0.0066 (5) −0.0002 (5)
Mn4 0.0236 (6) 0.0234 (6) 0.0313 (7) 0.0111 (5) 0.0132 (5) 0.0063 (5)
Mn5 0.0222 (6) 0.0208 (6) 0.0266 (6) 0.0102 (5) 0.0097 (5) 0.0039 (5)
Mn6 0.0177 (6) 0.0257 (6) 0.0178 (6) 0.0059 (5) 0.0040 (4) 0.0004 (5)
O1 0.039 (3) 0.030 (3) 0.022 (3) 0.019 (3) −0.006 (2) −0.006 (2)
O2 0.030 (3) 0.025 (3) 0.025 (3) 0.014 (2) 0.003 (2) 0.001 (2)
O3 0.025 (3) 0.022 (3) 0.017 (3) 0.006 (2) 0.003 (2) −0.007 (2)
O4 0.024 (3) 0.020 (3) 0.037 (3) 0.009 (2) 0.010 (3) 0.003 (2)
O5 0.025 (3) 0.017 (3) 0.028 (3) 0.006 (2) 0.010 (2) 0.006 (2)
O6 0.028 (3) 0.017 (3) 0.022 (3) 0.005 (2) 0.010 (2) 0.004 (2)
O7 0.030 (3) 0.028 (3) 0.040 (3) 0.010 (3) 0.021 (3) 0.005 (3)
O8 0.022 (3) 0.027 (3) 0.035 (3) 0.010 (2) 0.012 (2) 0.004 (3)
O9 0.020 (3) 0.022 (3) 0.024 (3) 0.008 (2) 0.006 (2) 0.002 (2)
O10 0.027 (3) 0.030 (3) 0.030 (3) 0.016 (3) 0.012 (3) 0.006 (3)
O11 0.025 (3) 0.029 (3) 0.032 (3) 0.014 (2) 0.010 (2) 0.003 (2)
O12 0.018 (3) 0.020 (3) 0.020 (3) 0.005 (2) 0.005 (2) 0.003 (2)
O13 0.027 (3) 0.033 (3) 0.014 (3) 0.003 (2) 0.004 (2) 0.004 (2)
O14 0.023 (3) 0.028 (3) 0.020 (3) 0.012 (2) 0.000 (2) −0.002 (2)
O15 0.016 (2) 0.024 (3) 0.024 (3) 0.004 (2) 0.006 (2) −0.002 (2)
O16 0.020 (3) 0.028 (3) 0.022 (3) 0.007 (2) −0.003 (2) −0.005 (2)
O17 0.031 (3) 0.025 (3) 0.026 (3) 0.012 (2) 0.006 (2) −0.001 (2)
O18 0.019 (3) 0.023 (3) 0.023 (3) 0.002 (2) 0.001 (2) −0.005 (2)
O19 0.032 (3) 0.029 (3) 0.026 (3) 0.012 (3) 0.006 (2) 0.005 (2)
O21 0.068 (6) 0.097 (7) 0.063 (5) 0.054 (5) −0.009 (5) −0.011 (5)
N1 0.020 (3) 0.024 (3) 0.017 (3) 0.005 (3) 0.007 (3) −0.003 (3)
N2 0.022 (3) 0.014 (3) 0.032 (4) 0.005 (3) 0.006 (3) 0.000 (3)
N3 0.021 (3) 0.024 (4) 0.031 (4) 0.011 (3) 0.012 (3) 0.006 (3)
N4 0.018 (3) 0.017 (3) 0.024 (3) 0.008 (3) 0.009 (3) 0.004 (3)
N5 0.013 (3) 0.019 (3) 0.025 (3) 0.000 (2) 0.007 (2) 0.000 (3)
N6 0.026 (3) 0.024 (4) 0.025 (3) 0.008 (3) 0.005 (3) −0.003 (3)
N7 0.041 (4) 0.021 (3) 0.024 (3) 0.013 (3) 0.006 (3) 0.002 (3)
N8 0.033 (4) 0.023 (4) 0.024 (4) 0.005 (3) 0.012 (3) 0.001 (3)
N9 0.034 (4) 0.035 (4) 0.032 (4) 0.010 (3) 0.016 (3) 0.008 (3)
N12 0.026 (4) 0.032 (4) 0.023 (3) 0.013 (3) 0.009 (3) 0.005 (3)
N13 0.030 (4) 0.049 (5) 0.035 (4) 0.022 (4) 0.011 (3) 0.017 (4)
N14 0.019 (3) 0.027 (4) 0.021 (3) 0.010 (3) 0.008 (3) 0.003 (3)
N15 0.023 (3) 0.031 (4) 0.022 (3) 0.010 (3) −0.002 (3) −0.007 (3)
N17 0.063 (6) 0.058 (6) 0.051 (6) 0.025 (5) 0.017 (5) 0.021 (5)
C1 0.026 (4) 0.022 (4) 0.029 (4) 0.005 (3) 0.005 (3) 0.002 (3)
C2 0.029 (5) 0.039 (5) 0.026 (4) 0.011 (4) −0.002 (4) −0.001 (4)
C3 0.027 (5) 0.054 (6) 0.031 (5) 0.013 (4) −0.003 (4) 0.007 (4)
C4 0.024 (4) 0.051 (6) 0.033 (5) 0.013 (4) 0.008 (4) 0.007 (4)
C5 0.026 (4) 0.036 (5) 0.034 (5) 0.015 (4) 0.014 (4) 0.008 (4)
C6 0.018 (4) 0.029 (5) 0.028 (4) 0.001 (3) 0.006 (3) 0.003 (4)
C7 0.017 (4) 0.023 (4) 0.031 (4) 0.003 (3) 0.012 (3) 0.004 (3)
C8 0.030 (4) 0.016 (4) 0.019 (4) 0.011 (3) 0.002 (3) 0.000 (3)
C9 0.033 (5) 0.021 (4) 0.026 (4) 0.008 (4) 0.007 (4) 0.002 (3)
C10 0.038 (5) 0.019 (4) 0.037 (5) 0.011 (4) 0.010 (4) 0.007 (4)
C11 0.032 (5) 0.026 (5) 0.032 (5) 0.015 (4) 0.007 (4) −0.003 (4)
C12 0.022 (4) 0.023 (4) 0.029 (4) 0.008 (3) 0.007 (3) −0.001 (3)
C13 0.026 (4) 0.024 (4) 0.024 (4) 0.011 (3) 0.007 (3) −0.004 (3)
C14 0.022 (4) 0.017 (4) 0.022 (4) 0.002 (3) 0.002 (3) 0.004 (3)
C15 0.020 (4) 0.031 (4) 0.024 (4) 0.008 (3) 0.011 (3) 0.010 (3)
C16 0.028 (5) 0.046 (6) 0.044 (6) 0.023 (4) 0.014 (4) 0.012 (4)
C17 0.025 (5) 0.043 (6) 0.060 (7) 0.015 (4) 0.020 (4) 0.020 (5)
C18 0.031 (5) 0.033 (5) 0.072 (8) 0.003 (4) 0.019 (5) 0.016 (5)
C19 0.032 (5) 0.024 (5) 0.062 (7) 0.013 (4) 0.014 (5) 0.016 (4)
C20 0.020 (4) 0.030 (5) 0.031 (5) 0.011 (3) 0.008 (3) 0.008 (4)
C21 0.025 (4) 0.030 (5) 0.023 (4) 0.012 (4) 0.006 (3) −0.002 (3)
C22 0.030 (4) 0.030 (5) 0.030 (4) 0.019 (4) 0.006 (4) 0.003 (4)
C23 0.045 (6) 0.017 (4) 0.046 (6) 0.009 (4) 0.017 (5) 0.005 (4)
C24 0.041 (6) 0.032 (5) 0.054 (6) 0.019 (4) 0.015 (5) 0.005 (5)
C25 0.037 (5) 0.036 (5) 0.051 (6) 0.024 (4) 0.021 (5) 0.006 (4)
C26 0.032 (5) 0.031 (5) 0.039 (5) 0.017 (4) 0.011 (4) 0.001 (4)
C27 0.022 (4) 0.028 (4) 0.029 (4) 0.014 (3) 0.004 (3) −0.004 (3)
C28 0.020 (4) 0.032 (5) 0.026 (4) 0.010 (3) 0.001 (3) 0.002 (4)
C29 0.025 (4) 0.023 (4) 0.022 (4) 0.006 (3) 0.004 (3) 0.001 (3)
C30 0.027 (4) 0.036 (5) 0.021 (4) 0.003 (4) 0.006 (3) −0.003 (4)
C31 0.021 (4) 0.041 (5) 0.030 (5) 0.005 (4) 0.009 (4) 0.006 (4)
C32 0.029 (5) 0.056 (6) 0.026 (5) 0.009 (4) 0.006 (4) 0.008 (4)
C33 0.032 (5) 0.036 (5) 0.026 (4) 0.011 (4) 0.009 (4) 0.006 (4)
C34 0.023 (4) 0.028 (4) 0.025 (4) 0.012 (3) 0.008 (3) −0.002 (3)
C35 0.023 (4) 0.021 (4) 0.019 (4) 0.010 (3) 0.007 (3) −0.006 (3)
C36 0.033 (5) 0.031 (5) 0.038 (5) 0.012 (4) 0.011 (4) 0.009 (4)
C37 0.048 (6) 0.031 (5) 0.048 (6) 0.019 (4) 0.030 (5) 0.010 (4)
C38 0.058 (7) 0.028 (5) 0.057 (6) 0.022 (5) 0.036 (5) 0.014 (5)
C39 0.036 (5) 0.044 (6) 0.068 (7) 0.017 (5) 0.026 (5) 0.020 (5)
C44 0.029 (5) 0.042 (5) 0.031 (5) 0.019 (4) 0.009 (4) 0.009 (4)
C45 0.047 (6) 0.043 (6) 0.027 (5) 0.021 (5) 0.014 (4) 0.006 (4)
C46 0.050 (6) 0.049 (6) 0.030 (5) 0.021 (5) 0.010 (5) 0.003 (4)
C47 0.036 (6) 0.067 (7) 0.053 (7) 0.021 (5) 0.005 (5) 0.031 (6)
C48 0.019 (4) 0.034 (5) 0.023 (4) 0.015 (3) 0.003 (3) 0.000 (3)
C49 0.017 (4) 0.030 (4) 0.028 (4) 0.010 (3) 0.004 (3) 0.001 (3)
C50 0.044 (5) 0.050 (6) 0.017 (4) 0.018 (5) 0.009 (4) 0.003 (4)
C51 0.037 (5) 0.033 (5) 0.022 (4) 0.001 (4) 0.001 (4) −0.004 (4)
C52 0.036 (5) 0.024 (4) 0.022 (4) 0.010 (4) 0.003 (3) 0.000 (3)
C53 0.029 (4) 0.035 (5) 0.025 (4) 0.010 (4) −0.004 (3) −0.008 (4)
C54 0.035 (5) 0.029 (5) 0.028 (4) 0.007 (4) 0.008 (4) −0.009 (4)
C55 0.091 (9) 0.028 (5) 0.037 (5) 0.029 (5) 0.002 (5) 0.004 (4)
C56 0.024 (4) 0.025 (4) 0.015 (4) 0.004 (3) 0.003 (3) −0.003 (3)
C57 0.025 (4) 0.021 (4) 0.044 (5) 0.001 (3) −0.003 (4) −0.006 (4)
C58 0.027 (4) 0.028 (5) 0.019 (4) 0.004 (4) 0.010 (3) −0.007 (3)
C59 0.035 (5) 0.032 (5) 0.043 (5) 0.011 (4) −0.008 (4) −0.001 (4)
C63 0.060 (8) 0.056 (7) 0.053 (7) 0.018 (6) −0.006 (6) 0.012 (6)
C64 0.063 (8) 0.056 (8) 0.069 (8) 0.014 (6) 0.003 (7) 0.018 (6)
C65 0.082 (10) 0.095 (11) 0.075 (9) 0.036 (8) 0.050 (8) 0.039 (8)
O20 0.029 (3) 0.036 (3) 0.030 (3) 0.010 (3) 0.009 (3) 0.004 (3)
C60 0.041 (5) 0.028 (4) 0.020 (4) 0.017 (4) −0.006 (4) −0.007 (3)
N16 0.028 (4) 0.033 (4) 0.018 (3) 0.009 (3) 0.000 (3) −0.005 (3)
C61 0.038 (5) 0.055 (7) 0.050 (6) 0.013 (5) 0.015 (5) −0.003 (5)
C62 0.030 (5) 0.059 (7) 0.041 (5) 0.015 (5) 0.013 (4) −0.006 (5)
N10 0.028 (7) 0.025 (7) 0.010 (8) 0.017 (5) 0.002 (6) 0.010 (6)
C40 0.019 (6) 0.030 (5) 0.027 (8) 0.009 (5) 0.001 (6) 0.007 (8)
C41 0.026 (4) 0.032 (4) 0.030 (6) 0.011 (3) 0.004 (4) −0.005 (5)
C42 0.028 (7) 0.031 (10) 0.030 (6) 0.009 (7) 0.006 (5) 0.000 (7)
N11 0.026 (4) 0.032 (4) 0.030 (6) 0.011 (3) 0.004 (4) −0.005 (5)
C43 0.036 (6) 0.048 (12) 0.015 (11) 0.010 (6) 0.005 (11) −0.007 (13)
O22 0.018 (9) 0.028 (10) 0.024 (11) 0.004 (7) −0.005 (8) 0.009 (8)
C40B 0.019 (6) 0.030 (5) 0.027 (8) 0.009 (5) 0.001 (6) 0.007 (8)
N11B 0.026 (4) 0.032 (4) 0.030 (6) 0.011 (3) 0.004 (4) −0.005 (5)
C42B 0.028 (7) 0.031 (10) 0.030 (6) 0.009 (7) 0.006 (5) 0.000 (7)
C43B 0.036 (6) 0.048 (12) 0.015 (11) 0.010 (6) 0.005 (11) −0.007 (13)
C67 0.064 (15) 0.063 (16) 0.051 (15) 0.019 (12) 0.036 (12) 0.025 (12)
C68 0.074 (14) 0.084 (17) 0.051 (16) 0.024 (12) 0.018 (9) 0.019 (17)
O23 0.044 (8) 0.041 (8) 0.044 (8) 0.017 (7) 0.018 (7) 0.008 (7)
C69 0.056 (11) 0.059 (7) 0.036 (7) 0.019 (7) 0.009 (8) 0.020 (5)
C70 0.054 (15) 0.12 (3) 0.044 (14) 0.032 (16) 0.016 (12) 0.016 (16)
C67B 0.072 (19) 0.07 (2) 0.07 (2) 0.049 (17) 0.037 (18) 0.037 (18)
C68B 0.074 (14) 0.084 (17) 0.051 (16) 0.024 (12) 0.018 (9) 0.019 (17)
O23B 0.070 (12) 0.085 (14) 0.038 (9) 0.031 (11) 0.010 (9) 0.015 (9)
C69B 0.056 (11) 0.059 (7) 0.036 (7) 0.019 (7) 0.009 (8) 0.020 (5)
C70B 0.040 (13) 0.09 (2) 0.038 (13) 0.011 (13) −0.001 (11) 0.012 (14)
O24 0.064 (14) 0.079 (12) 0.057 (11) 0.020 (12) 0.002 (9) 0.015 (8)
O25 0.062 (11) 0.037 (9) 0.069 (12) 0.010 (8) 0.013 (9) 0.022 (8)
C72 0.052 (13) 0.053 (14) 0.037 (12) 0.004 (11) 0.003 (10) 0.016 (10)
C71 0.071 (17) 0.030 (12) 0.031 (12) 0.017 (12) −0.008 (11) 0.007 (9)
O26 0.064 (14) 0.079 (12) 0.057 (11) 0.020 (12) 0.002 (9) 0.015 (8)

Geometric parameters (Å, º)

Mn1—O18 2.211 (5) C29—C30 1.396 (11)
Mn1—O6 2.226 (5) C29—C34 1.399 (11)
Mn1—O15 2.237 (5) C30—C31 1.387 (12)
Mn1—O9 2.244 (5) C30—H30 0.9500
Mn1—O12 2.246 (5) C31—C32 1.400 (12)
Mn1—O3 2.265 (6) C31—H31 0.9500
Mn1—O16 2.280 (5) C32—C33 1.375 (12)
Mn2—O1 1.851 (5) C32—H32 0.9500
Mn2—O15 1.889 (5) C33—C34 1.397 (12)
Mn2—N1 1.970 (6) C33—H33 0.9500
Mn2—N6 2.045 (6) C34—C35 1.492 (10)
Mn2—O14 2.132 (5) C36—H36 0.9500
Mn3—O4 1.874 (5) C37—C38 1.362 (13)
Mn3—O3 1.901 (5) C37—H37 0.9500
Mn3—N2 2.005 (7) C38—H38 0.9500
Mn3—N8 2.067 (7) C39—H39A 0.9800
Mn3—O2 2.119 (5) C39—H39B 0.9800
Mn3—O17 2.245 (6) C39—H39C 0.9800
Mn4—O7 1.869 (6) C44—H44 0.9500
Mn4—O6 1.912 (5) C45—C46 1.368 (13)
Mn4—O5 1.951 (5) C45—H45 0.9500
Mn4—N3 1.957 (7) C46—H46 0.9500
Mn4—O22 2.08 (3) C47—H47A 0.9800
Mn4—O20 2.308 (6) C47—H47B 0.9800
Mn4—N10 2.35 (2) C47—H47C 0.9800
Mn5—O10 1.871 (6) C48—H48 0.9500
Mn5—O9 1.938 (5) C49—C50 1.345 (11)
Mn5—O8 1.942 (5) C49—H49 0.9500
Mn5—N4 1.945 (6) C50—H50 0.9500
Mn5—O19 2.267 (6) C51—H51A 0.9800
Mn5—N12 2.282 (7) C51—H51B 0.9800
Mn6—O13 1.864 (5) C51—H51C 0.9800
Mn6—O12 1.916 (5) C52—H52 0.9500
Mn6—N5 1.967 (6) C53—C54 1.349 (12)
Mn6—N14 2.043 (6) C53—H53 0.9500
Mn6—O11 2.144 (6) C54—H54 0.9500
Mn6—O16 2.379 (5) C55—H55A 0.9800
O1—C1 1.337 (10) C55—H55B 0.9800
O2—C7 1.279 (9) C55—H55C 0.9800
O3—N1 1.419 (7) C56—C57 1.498 (10)
O4—C8 1.321 (9) C57—H57A 0.9800
O5—C14 1.310 (9) C57—H57B 0.9800
O6—N2 1.434 (8) C57—H57C 0.9800
O7—C15 1.343 (10) C58—C59 1.526 (11)
O8—C21 1.288 (10) C59—H59A 0.9800
O9—N3 1.406 (8) C59—H59B 0.9800
O10—C22 1.332 (9) C59—H59C 0.9800
O11—C28 1.284 (10) C63—H63 0.9500
O12—N4 1.404 (7) C64—H64A 0.9800
O13—C29 1.333 (9) C64—H64B 0.9800
O14—C35 1.296 (9) C64—H64C 0.9800
O15—N5 1.404 (7) C65—H65A 0.9800
O16—C56 1.281 (9) C65—H65B 0.9800
O17—C56 1.255 (9) C65—H65C 0.9800
O18—C58 1.272 (10) O20—C60 1.241 (10)
O19—C58 1.254 (10) C60—N16 1.338 (9)
O21—C63 1.219 (14) C60—H60 0.9500
N1—C7 1.325 (10) N16—C62 1.436 (10)
N2—C14 1.320 (9) N16—C61 1.438 (11)
N3—C21 1.335 (10) C61—H61A 0.9800
N4—C28 1.325 (9) C61—H61B 0.9800
N5—C35 1.319 (10) C61—H61C 0.9800
N6—C52 1.329 (11) C62—H62A 0.9800
N6—C53 1.373 (9) C62—H62B 0.9800
N7—C52 1.343 (9) C62—H62C 0.9800
N7—C54 1.367 (11) N10—C40 1.32 (2)
N7—C55 1.441 (11) N10—C41 1.38 (3)
N8—C36 1.320 (11) C40—N11 1.36 (2)
N8—C37 1.377 (11) C40—H40 0.9500
N9—C36 1.341 (11) C41—C42 1.37 (3)
N9—C38 1.366 (12) C41—H41 0.9500
N9—C39 1.467 (11) C42—N11 1.38 (2)
N12—C44 1.328 (11) C42—H42 0.9500
N12—C45 1.395 (10) N11—C43 1.49 (2)
N13—C44 1.344 (11) C43—H43A 0.9800
N13—C46 1.351 (12) C43—H43B 0.9800
N13—C47 1.489 (12) C43—H43C 0.9800
N14—C48 1.337 (9) O22—C40B 1.25 (2)
N14—C49 1.386 (10) C40B—N11B 1.34 (2)
N15—C48 1.323 (10) C40B—H40B 0.9500
N15—C50 1.355 (11) N11B—C42B 1.43 (2)
N15—C51 1.481 (10) N11B—C43B 1.44 (2)
N17—C63 1.344 (15) C42B—H42A 0.9800
N17—C65 1.434 (14) C42B—H42B 0.9800
N17—C64 1.487 (14) C42B—H42C 0.9800
C1—C2 1.403 (11) C43B—H43D 0.9800
C1—C6 1.405 (11) C43B—H43E 0.9800
C2—C3 1.380 (13) C43B—H43F 0.9800
C2—H2 0.9500 C67—C68 1.53 (2)
C3—C4 1.377 (13) C67—H67A 0.9800
C3—H3 0.9500 C67—H67B 0.9800
C4—C5 1.370 (12) C67—H67C 0.9800
C4—H4 0.9500 C68—O23 1.41 (3)
C5—C6 1.391 (12) C68—H68A 0.9900
C5—H5 0.9500 C68—H68B 0.9900
C6—C7 1.489 (11) O23—C69 1.44 (2)
C8—C9 1.409 (11) C69—C70 1.54 (3)
C8—C13 1.412 (11) C69—H69A 0.9900
C9—C10 1.400 (12) C69—H69B 0.9900
C9—H9 0.9500 C70—H70A 0.9800
C10—C11 1.381 (12) C70—H70B 0.9800
C10—H10 0.9500 C70—H70C 0.9800
C11—C12 1.367 (12) C67B—C68B 1.53 (3)
C11—H11 0.9500 C67B—H67D 0.9800
C12—C13 1.426 (10) C67B—H67E 0.9800
C12—H12 0.9500 C67B—H67F 0.9800
C13—C14 1.458 (11) C68B—O23B 1.41 (3)
C15—C20 1.385 (11) C68B—H68C 0.9900
C15—C16 1.413 (11) C68B—H68D 0.9900
C16—C17 1.394 (13) O23B—C69B 1.43 (2)
C16—H16 0.9500 C69B—C70B 1.54 (3)
C17—C18 1.362 (13) C69B—H69C 0.9900
C17—H17 0.9500 C69B—H69D 0.9900
C18—C19 1.377 (12) C70B—H70D 0.9800
C18—H18 0.9500 C70B—H70E 0.9800
C19—C20 1.400 (12) C70B—H70F 0.9800
C19—H19 0.9500 O24—H24A 0.85 (2)
C20—C21 1.491 (11) O24—H24B 0.85 (2)
C22—C23 1.394 (11) O25—C72 1.36 (3)
C22—C27 1.425 (12) O25—H25A 0.8400
C23—C24 1.365 (12) C72—H72A 0.9800
C23—H23 0.9500 C72—H72B 0.9800
C24—C25 1.391 (13) C72—H72C 0.9800
C24—H24 0.9500 C71—O26 1.43 (4)
C25—C26 1.378 (12) C71—H71A 0.9800
C25—H25 0.9500 C71—H71B 0.9800
C26—C27 1.416 (11) C71—H71C 0.9800
C26—H26 0.9500 O26—H26A 0.8400
C27—C28 1.477 (12)
O18—Mn1—O6 93.13 (19) C27—C26—H26 119.4
O18—Mn1—O15 70.27 (18) C26—C27—C22 118.7 (8)
O6—Mn1—O15 148.3 (2) C26—C27—C28 117.6 (8)
O18—Mn1—O9 87.6 (2) C22—C27—C28 123.7 (7)
O6—Mn1—O9 77.54 (19) O11—C28—N4 121.0 (7)
O15—Mn1—O9 126.44 (19) O11—C28—C27 121.5 (7)
O18—Mn1—O12 114.48 (19) N4—C28—C27 117.5 (7)
O6—Mn1—O12 137.17 (18) O13—C29—C30 116.1 (7)
O15—Mn1—O12 74.31 (18) O13—C29—C34 125.3 (7)
O9—Mn1—O12 71.99 (18) C30—C29—C34 118.6 (8)
O18—Mn1—O3 89.1 (2) C31—C30—C29 120.8 (8)
O6—Mn1—O3 77.94 (18) C31—C30—H30 119.6
O15—Mn1—O3 75.07 (19) C29—C30—H30 119.6
O9—Mn1—O3 155.02 (18) C30—C31—C32 120.0 (8)
O12—Mn1—O3 131.25 (19) C30—C31—H31 120.0
O18—Mn1—O16 157.79 (19) C32—C31—H31 120.0
O6—Mn1—O16 101.13 (18) C33—C32—C31 119.6 (9)
O15—Mn1—O16 89.02 (18) C33—C32—H32 120.2
O9—Mn1—O16 111.98 (19) C31—C32—H32 120.2
O12—Mn1—O16 65.01 (19) C32—C33—C34 120.5 (8)
O3—Mn1—O16 77.50 (19) C32—C33—H33 119.7
O1—Mn2—O15 175.9 (2) C34—C33—H33 119.7
O1—Mn2—N1 89.4 (2) C33—C34—C29 120.3 (7)
O15—Mn2—N1 94.2 (2) C33—C34—C35 118.2 (7)
O1—Mn2—N6 87.0 (3) C29—C34—C35 121.4 (7)
O15—Mn2—N6 89.0 (2) O14—C35—N5 121.4 (7)
N1—Mn2—N6 163.1 (3) O14—C35—C34 119.8 (7)
O1—Mn2—O14 103.4 (2) N5—C35—C34 118.8 (7)
O15—Mn2—O14 78.2 (2) N8—C36—N9 112.2 (8)
N1—Mn2—O14 95.8 (2) N8—C36—H36 123.9
N6—Mn2—O14 101.1 (2) N9—C36—H36 123.9
O4—Mn3—O3 176.2 (2) C38—C37—N8 110.3 (8)
O4—Mn3—N2 88.5 (2) C38—C37—H37 124.8
O3—Mn3—N2 91.5 (2) N8—C37—H37 124.8
O4—Mn3—N8 89.7 (3) C37—C38—N9 105.6 (8)
O3—Mn3—N8 91.0 (2) C37—C38—H38 127.2
N2—Mn3—N8 169.5 (3) N9—C38—H38 127.2
O4—Mn3—O2 97.5 (2) N9—C39—H39A 109.5
O3—Mn3—O2 78.8 (2) N9—C39—H39B 109.5
N2—Mn3—O2 99.1 (2) H39A—C39—H39B 109.5
N8—Mn3—O2 91.4 (2) N9—C39—H39C 109.5
O4—Mn3—O17 96.3 (2) H39A—C39—H39C 109.5
O3—Mn3—O17 87.5 (2) H39B—C39—H39C 109.5
N2—Mn3—O17 88.0 (2) N12—C44—N13 112.1 (8)
N8—Mn3—O17 81.9 (2) N12—C44—H44 124.0
O2—Mn3—O17 164.7 (2) N13—C44—H44 124.0
O7—Mn4—O6 179.0 (2) C46—C45—N12 109.5 (8)
O7—Mn4—O5 97.2 (2) C46—C45—H45 125.2
O6—Mn4—O5 82.2 (2) N12—C45—H45 125.2
O7—Mn4—N3 90.2 (3) N13—C46—C45 106.4 (8)
O6—Mn4—N3 90.4 (2) N13—C46—H46 126.8
O5—Mn4—N3 171.3 (2) C45—C46—H46 126.8
O7—Mn4—O22 86.4 (10) N13—C47—H47A 109.5
O6—Mn4—O22 94.4 (10) N13—C47—H47B 109.5
O5—Mn4—O22 93.6 (11) H47A—C47—H47B 109.5
N3—Mn4—O22 91.5 (11) N13—C47—H47C 109.5
O7—Mn4—O20 90.9 (2) H47A—C47—H47C 109.5
O6—Mn4—O20 88.3 (2) H47B—C47—H47C 109.5
O5—Mn4—O20 86.3 (2) N15—C48—N14 110.0 (7)
N3—Mn4—O20 88.9 (2) N15—C48—H48 125.0
O22—Mn4—O20 177.3 (10) N14—C48—H48 125.0
O7—Mn4—N10 91.7 (6) C50—C49—N14 107.9 (7)
O6—Mn4—N10 89.0 (6) C50—C49—H49 126.1
O5—Mn4—N10 88.7 (7) N14—C49—H49 126.1
N3—Mn4—N10 95.7 (7) C49—C50—N15 107.5 (7)
O20—Mn4—N10 174.6 (6) C49—C50—H50 126.3
O10—Mn5—O9 177.8 (2) N15—C50—H50 126.3
O10—Mn5—O8 95.9 (2) N15—C51—H51A 109.5
O9—Mn5—O8 82.5 (2) N15—C51—H51B 109.5
O10—Mn5—N4 89.4 (2) H51A—C51—H51B 109.5
O9—Mn5—N4 92.2 (2) N15—C51—H51C 109.5
O8—Mn5—N4 174.5 (3) H51A—C51—H51C 109.5
O10—Mn5—O19 91.3 (2) H51B—C51—H51C 109.5
O9—Mn5—O19 87.2 (2) N6—C52—N7 110.9 (7)
O8—Mn5—O19 84.4 (2) N6—C52—H52 124.6
N4—Mn5—O19 93.7 (2) N7—C52—H52 124.6
O10—Mn5—N12 91.3 (2) C54—C53—N6 109.4 (8)
O9—Mn5—N12 90.1 (2) C54—C53—H53 125.3
O8—Mn5—N12 91.3 (2) N6—C53—H53 125.3
N4—Mn5—N12 90.3 (2) C53—C54—N7 106.9 (7)
O19—Mn5—N12 175.2 (2) C53—C54—H54 126.6
O13—Mn6—O12 174.6 (2) N7—C54—H54 126.6
O13—Mn6—N5 87.7 (2) N7—C55—H55A 109.5
O12—Mn6—N5 93.5 (2) N7—C55—H55B 109.5
O13—Mn6—N14 87.6 (2) H55A—C55—H55B 109.5
O12—Mn6—N14 90.5 (2) N7—C55—H55C 109.5
N5—Mn6—N14 171.0 (3) H55A—C55—H55C 109.5
O13—Mn6—O11 107.3 (2) H55B—C55—H55C 109.5
O12—Mn6—O11 77.9 (2) O17—C56—O16 123.0 (7)
N5—Mn6—O11 93.7 (2) O17—C56—C57 120.2 (7)
N14—Mn6—O11 95.0 (2) O16—C56—C57 116.8 (7)
O13—Mn6—O16 107.0 (2) C56—C57—H57A 109.5
O12—Mn6—O16 68.0 (2) C56—C57—H57B 109.5
N5—Mn6—O16 83.3 (2) H57A—C57—H57B 109.5
N14—Mn6—O16 90.7 (2) C56—C57—H57C 109.5
O11—Mn6—O16 145.4 (2) H57A—C57—H57C 109.5
C1—O1—Mn2 131.9 (5) H57B—C57—H57C 109.5
C7—O2—Mn3 110.3 (5) O19—C58—O18 126.0 (7)
N1—O3—Mn3 115.7 (4) O19—C58—C59 117.7 (8)
N1—O3—Mn1 112.8 (4) O18—C58—C59 116.2 (8)
Mn3—O3—Mn1 119.2 (2) C58—C59—H59A 109.5
C8—O4—Mn3 129.1 (5) C58—C59—H59B 109.5
C14—O5—Mn4 111.9 (5) H59A—C59—H59B 109.5
N2—O6—Mn4 112.7 (4) C58—C59—H59C 109.5
N2—O6—Mn1 124.0 (4) H59A—C59—H59C 109.5
Mn4—O6—Mn1 123.2 (3) H59B—C59—H59C 109.5
C15—O7—Mn4 124.9 (5) O21—C63—N17 126.0 (11)
C21—O8—Mn5 111.0 (5) O21—C63—H63 117.0
N3—O9—Mn5 110.8 (4) N17—C63—H63 117.0
N3—O9—Mn1 117.3 (4) N17—C64—H64A 109.5
Mn5—O9—Mn1 112.4 (2) N17—C64—H64B 109.5
C22—O10—Mn5 130.5 (5) H64A—C64—H64B 109.5
C28—O11—Mn6 110.2 (5) N17—C64—H64C 109.5
N4—O12—Mn6 117.1 (4) H64A—C64—H64C 109.5
N4—O12—Mn1 114.2 (4) H64B—C64—H64C 109.5
Mn6—O12—Mn1 107.3 (2) N17—C65—H65A 109.5
C29—O13—Mn6 132.4 (5) N17—C65—H65B 109.5
C35—O14—Mn2 109.4 (5) H65A—C65—H65B 109.5
N5—O15—Mn2 118.1 (4) N17—C65—H65C 109.5
N5—O15—Mn1 112.2 (4) H65A—C65—H65C 109.5
Mn2—O15—Mn1 109.8 (2) H65B—C65—H65C 109.5
C56—O16—Mn1 130.8 (5) C60—O20—Mn4 123.1 (5)
C56—O16—Mn6 133.1 (5) O20—C60—N16 124.5 (8)
Mn1—O16—Mn6 92.22 (19) O20—C60—H60 117.8
C56—O17—Mn3 128.8 (4) N16—C60—H60 117.8
C58—O18—Mn1 128.1 (5) C60—N16—C62 123.0 (7)
C58—O19—Mn5 135.8 (5) C60—N16—C61 119.9 (7)
C7—N1—O3 113.8 (6) C62—N16—C61 117.1 (7)
C7—N1—Mn2 132.3 (5) N16—C61—H61A 109.5
O3—N1—Mn2 113.7 (4) N16—C61—H61B 109.5
C14—N2—O6 112.2 (6) H61A—C61—H61B 109.5
C14—N2—Mn3 130.6 (6) N16—C61—H61C 109.5
O6—N2—Mn3 117.2 (4) H61A—C61—H61C 109.5
C21—N3—O9 112.5 (6) H61B—C61—H61C 109.5
C21—N3—Mn4 128.7 (5) N16—C62—H62A 109.5
O9—N3—Mn4 118.5 (4) N16—C62—H62B 109.5
C28—N4—O12 113.7 (6) H62A—C62—H62B 109.5
C28—N4—Mn5 134.2 (6) N16—C62—H62C 109.5
O12—N4—Mn5 112.1 (4) H62A—C62—H62C 109.5
C35—N5—O15 112.7 (6) H62B—C62—H62C 109.5
C35—N5—Mn6 134.0 (5) C40—N10—C41 105.9 (19)
O15—N5—Mn6 113.1 (4) C40—N10—Mn4 126.8 (19)
C52—N6—C53 105.7 (7) C41—N10—Mn4 127.2 (14)
C52—N6—Mn2 126.9 (5) N10—C40—N11 110.3 (18)
C53—N6—Mn2 127.3 (6) N10—C40—H40 124.8
C52—N7—C54 107.1 (7) N11—C40—H40 124.8
C52—N7—C55 126.0 (7) C42—C41—N10 110.4 (17)
C54—N7—C55 126.9 (7) C42—C41—H41 124.8
C36—N8—C37 104.5 (7) N10—C41—H41 124.8
C36—N8—Mn3 126.1 (6) C41—C42—N11 104.3 (17)
C37—N8—Mn3 127.8 (6) C41—C42—H42 127.9
C36—N9—C38 107.4 (8) N11—C42—H42 127.9
C36—N9—C39 126.4 (8) C40—N11—C42 108.7 (15)
C38—N9—C39 126.2 (8) C40—N11—C43 125.0 (18)
C44—N12—C45 104.2 (7) C42—N11—C43 125.7 (19)
C44—N12—Mn5 125.3 (5) N11—C43—H43A 109.5
C45—N12—Mn5 129.5 (6) N11—C43—H43B 109.5
C44—N13—C46 107.8 (8) H43A—C43—H43B 109.5
C44—N13—C47 125.3 (8) N11—C43—H43C 109.5
C46—N13—C47 126.9 (8) H43A—C43—H43C 109.5
C48—N14—C49 106.2 (6) H43B—C43—H43C 109.5
C48—N14—Mn6 126.6 (5) C40B—O22—Mn4 130 (3)
C49—N14—Mn6 127.3 (5) O22—C40B—N11B 125 (3)
C48—N15—C50 108.4 (7) O22—C40B—H40B 117.7
C48—N15—C51 124.9 (7) N11B—C40B—H40B 117.7
C50—N15—C51 126.7 (7) C40B—N11B—C42B 120 (2)
C63—N17—C65 122.6 (11) C40B—N11B—C43B 124 (3)
C63—N17—C64 119.2 (10) C42B—N11B—C43B 116 (3)
C65—N17—C64 118.2 (11) N11B—C42B—H42A 109.5
O1—C1—C2 116.9 (7) N11B—C42B—H42B 109.5
O1—C1—C6 124.4 (7) H42A—C42B—H42B 109.5
C2—C1—C6 118.7 (8) N11B—C42B—H42C 109.5
C3—C2—C1 121.1 (8) H42A—C42B—H42C 109.5
C3—C2—H2 119.4 H42B—C42B—H42C 109.5
C1—C2—H2 119.4 N11B—C43B—H43D 109.5
C4—C3—C2 119.4 (8) N11B—C43B—H43E 109.5
C4—C3—H3 120.3 H43D—C43B—H43E 109.5
C2—C3—H3 120.3 N11B—C43B—H43F 109.5
C5—C4—C3 120.7 (9) H43D—C43B—H43F 109.5
C5—C4—H4 119.7 H43E—C43B—H43F 109.5
C3—C4—H4 119.7 C68—C67—H67A 109.5
C4—C5—C6 121.0 (8) C68—C67—H67B 109.5
C4—C5—H5 119.5 H67A—C67—H67B 109.5
C6—C5—H5 119.5 C68—C67—H67C 109.5
C5—C6—C1 119.0 (8) H67A—C67—H67C 109.5
C5—C6—C7 118.0 (7) H67B—C67—H67C 109.5
C1—C6—C7 123.0 (8) O23—C68—C67 111 (2)
O2—C7—N1 120.6 (7) O23—C68—H68A 109.5
O2—C7—C6 120.6 (7) C67—C68—H68A 109.5
N1—C7—C6 118.8 (7) O23—C68—H68B 109.5
O4—C8—C9 116.9 (7) C67—C68—H68B 109.5
O4—C8—C13 123.8 (7) H68A—C68—H68B 108.1
C9—C8—C13 119.3 (7) C68—O23—C69 111.1 (18)
C10—C9—C8 120.1 (8) O23—C69—C70 106 (2)
C10—C9—H9 119.9 O23—C69—H69A 110.6
C8—C9—H9 119.9 C70—C69—H69A 110.6
C11—C10—C9 120.9 (8) O23—C69—H69B 110.6
C11—C10—H10 119.5 C70—C69—H69B 110.6
C9—C10—H10 119.5 H69A—C69—H69B 108.8
C12—C11—C10 119.5 (8) C69—C70—H70A 109.5
C12—C11—H11 120.3 C69—C70—H70B 109.5
C10—C11—H11 120.3 H70A—C70—H70B 109.5
C11—C12—C13 122.1 (8) C69—C70—H70C 109.5
C11—C12—H12 119.0 H70A—C70—H70C 109.5
C13—C12—H12 119.0 H70B—C70—H70C 109.5
C8—C13—C12 118.1 (8) C68B—C67B—H67D 109.5
C8—C13—C14 124.2 (7) C68B—C67B—H67E 109.5
C12—C13—C14 117.7 (8) H67D—C67B—H67E 109.5
O5—C14—N2 120.8 (7) C68B—C67B—H67F 109.5
O5—C14—C13 120.2 (7) H67D—C67B—H67F 109.5
N2—C14—C13 119.0 (7) H67E—C67B—H67F 109.5
O7—C15—C20 123.0 (7) O23B—C68B—C67B 112 (2)
O7—C15—C16 117.7 (7) O23B—C68B—H68C 109.3
C20—C15—C16 119.3 (8) C67B—C68B—H68C 109.3
C17—C16—C15 119.3 (8) O23B—C68B—H68D 109.3
C17—C16—H16 120.4 C67B—C68B—H68D 109.3
C15—C16—H16 120.4 H68C—C68B—H68D 107.9
C18—C17—C16 121.0 (8) C68B—O23B—C69B 113 (3)
C18—C17—H17 119.5 O23B—C69B—C70B 106 (2)
C16—C17—H17 119.5 O23B—C69B—H69C 110.5
C17—C18—C19 120.1 (9) C70B—C69B—H69C 110.5
C17—C18—H18 119.9 O23B—C69B—H69D 110.5
C19—C18—H18 119.9 C70B—C69B—H69D 110.5
C18—C19—C20 120.6 (8) H69C—C69B—H69D 108.7
C18—C19—H19 119.7 C69B—C70B—H70D 109.5
C20—C19—H19 119.7 C69B—C70B—H70E 109.5
C15—C20—C19 119.7 (7) H70D—C70B—H70E 109.5
C15—C20—C21 123.8 (7) C69B—C70B—H70F 109.5
C19—C20—C21 116.4 (7) H70D—C70B—H70F 109.5
O8—C21—N3 121.6 (7) H70E—C70B—H70F 109.5
O8—C21—C20 120.0 (7) H24A—O24—H24B 120 (10)
N3—C21—C20 118.3 (7) C72—O25—H25A 109.5
O10—C22—C23 118.0 (8) O25—C72—H72A 109.5
O10—C22—C27 124.2 (7) O25—C72—H72B 109.5
C23—C22—C27 117.8 (8) H72A—C72—H72B 109.5
C24—C23—C22 122.5 (9) O25—C72—H72C 109.5
C24—C23—H23 118.7 H72A—C72—H72C 109.5
C22—C23—H23 118.7 H72B—C72—H72C 109.5
C23—C24—C25 120.3 (9) O26—C71—H71A 109.5
C23—C24—H24 119.8 O26—C71—H71B 109.5
C25—C24—H24 119.8 H71A—C71—H71B 109.5
C26—C25—C24 119.3 (8) O26—C71—H71C 109.5
C26—C25—H25 120.3 H71A—C71—H71C 109.5
C24—C25—H25 120.3 H71B—C71—H71C 109.5
C25—C26—C27 121.3 (9) C71—O26—H26A 109.5
C25—C26—H26 119.4
N1—Mn2—O1—C1 4.1 (7) C19—C20—C21—N3 −162.5 (8)
N6—Mn2—O1—C1 −159.4 (7) Mn5—O10—C22—C23 173.4 (6)
O14—Mn2—O1—C1 99.9 (7) Mn5—O10—C22—C27 −8.2 (12)
N2—Mn3—O4—C8 25.0 (7) O10—C22—C23—C24 179.3 (9)
N8—Mn3—O4—C8 −165.4 (7) C27—C22—C23—C24 0.8 (14)
O2—Mn3—O4—C8 −74.0 (7) C22—C23—C24—C25 −0.8 (16)
O17—Mn3—O4—C8 112.8 (6) C23—C24—C25—C26 −0.5 (15)
O5—Mn4—O7—C15 −149.1 (7) C24—C25—C26—C27 1.7 (14)
N3—Mn4—O7—C15 35.6 (7) C25—C26—C27—C22 −1.6 (13)
O22—Mn4—O7—C15 −55.9 (13) C25—C26—C27—C28 179.5 (8)
O20—Mn4—O7—C15 124.5 (7) O10—C22—C27—C26 −178.1 (8)
N10—Mn4—O7—C15 −60.2 (9) C23—C22—C27—C26 0.4 (12)
O8—Mn5—O10—C22 −169.4 (7) O10—C22—C27—C28 0.8 (13)
N4—Mn5—O10—C22 8.8 (7) C23—C22—C27—C28 179.2 (8)
O19—Mn5—O10—C22 −84.9 (7) Mn6—O11—C28—N4 0.5 (9)
N12—Mn5—O10—C22 99.1 (7) Mn6—O11—C28—C27 179.4 (6)
N5—Mn6—O13—C29 5.2 (7) O12—N4—C28—O11 2.3 (10)
N14—Mn6—O13—C29 177.5 (7) Mn5—N4—C28—O11 −179.7 (5)
O11—Mn6—O13—C29 −88.0 (7) O12—N4—C28—C27 −176.6 (6)
O16—Mn6—O13—C29 87.5 (7) Mn5—N4—C28—C27 1.4 (11)
N1—Mn2—O15—N5 91.7 (5) C26—C27—C28—O11 2.4 (12)
N6—Mn2—O15—N5 −104.9 (5) C22—C27—C28—O11 −176.5 (8)
O14—Mn2—O15—N5 −3.4 (4) C26—C27—C28—N4 −178.7 (7)
N1—Mn2—O15—Mn1 −38.7 (3) C22—C27—C28—N4 2.4 (12)
N6—Mn2—O15—Mn1 124.7 (3) Mn6—O13—C29—C30 171.1 (6)
O14—Mn2—O15—Mn1 −133.8 (3) Mn6—O13—C29—C34 −7.5 (12)
Mn3—O3—N1—C7 7.7 (7) O13—C29—C30—C31 178.5 (8)
Mn1—O3—N1—C7 −134.4 (5) C34—C29—C30—C31 −2.8 (13)
Mn3—O3—N1—Mn2 −177.2 (3) C29—C30—C31—C32 0.7 (14)
Mn1—O3—N1—Mn2 40.6 (5) C30—C31—C32—C33 0.2 (14)
Mn4—O6—N2—C14 −4.7 (7) C31—C32—C33—C34 1.2 (14)
Mn1—O6—N2—C14 178.8 (5) C32—C33—C34—C29 −3.3 (13)
Mn4—O6—N2—Mn3 174.5 (3) C32—C33—C34—C35 177.4 (8)
Mn1—O6—N2—Mn3 −1.9 (6) O13—C29—C34—C33 −177.4 (8)
Mn5—O9—N3—C21 −11.7 (7) C30—C29—C34—C33 4.1 (12)
Mn1—O9—N3—C21 −142.7 (5) O13—C29—C34—C35 1.9 (12)
Mn5—O9—N3—Mn4 174.0 (3) C30—C29—C34—C35 −176.6 (7)
Mn1—O9—N3—Mn4 43.0 (6) Mn2—O14—C35—N5 −4.2 (8)
Mn6—O12—N4—C28 −4.3 (7) Mn2—O14—C35—C34 177.4 (5)
Mn1—O12—N4—C28 −130.9 (5) O15—N5—C35—O14 1.7 (10)
Mn6—O12—N4—Mn5 177.2 (3) Mn6—N5—C35—O14 175.8 (5)
Mn1—O12—N4—Mn5 50.6 (5) O15—N5—C35—C34 −179.9 (6)
Mn2—O15—N5—C35 2.3 (7) Mn6—N5—C35—C34 −5.8 (11)
Mn1—O15—N5—C35 131.6 (5) C33—C34—C35—O14 2.0 (11)
Mn2—O15—N5—Mn6 −173.1 (3) C29—C34—C35—O14 −177.3 (7)
Mn1—O15—N5—Mn6 −43.8 (5) C33—C34—C35—N5 −176.4 (7)
Mn2—O1—C1—C2 176.2 (6) C29—C34—C35—N5 4.3 (11)
Mn2—O1—C1—C6 −3.2 (12) C37—N8—C36—N9 −1.9 (10)
O1—C1—C2—C3 −178.6 (8) Mn3—N8—C36—N9 164.7 (6)
C6—C1—C2—C3 0.9 (13) C38—N9—C36—N8 1.5 (11)
C1—C2—C3—C4 −1.6 (14) C39—N9—C36—N8 −177.1 (8)
C2—C3—C4—C5 0.2 (14) C36—N8—C37—C38 1.6 (11)
C3—C4—C5—C6 1.8 (13) Mn3—N8—C37—C38 −164.7 (7)
C4—C5—C6—C1 −2.4 (12) N8—C37—C38—N9 −0.7 (11)
C4—C5—C6—C7 176.9 (8) C36—N9—C38—C37 −0.4 (11)
O1—C1—C6—C5 −179.5 (8) C39—N9—C38—C37 178.2 (9)
C2—C1—C6—C5 1.0 (12) C45—N12—C44—N13 1.4 (10)
O1—C1—C6—C7 1.3 (13) Mn5—N12—C44—N13 −168.2 (5)
C2—C1—C6—C7 −178.2 (8) C46—N13—C44—N12 −1.1 (11)
Mn3—O2—C7—N1 −6.3 (9) C47—N13—C44—N12 178.7 (8)
Mn3—O2—C7—C6 174.7 (5) C44—N12—C45—C46 −1.2 (10)
O3—N1—C7—O2 −0.2 (10) Mn5—N12—C45—C46 167.7 (6)
Mn2—N1—C7—O2 −174.1 (5) C44—N13—C46—C45 0.3 (11)
O3—N1—C7—C6 178.8 (6) C47—N13—C46—C45 −179.6 (9)
Mn2—N1—C7—C6 4.9 (11) N12—C45—C46—N13 0.6 (11)
C5—C6—C7—O2 −2.3 (11) C50—N15—C48—N14 −1.8 (10)
C1—C6—C7—O2 176.9 (7) C51—N15—C48—N14 178.4 (7)
C5—C6—C7—N1 178.7 (7) C49—N14—C48—N15 2.2 (9)
C1—C6—C7—N1 −2.1 (11) Mn6—N14—C48—N15 −176.9 (5)
Mn3—O4—C8—C9 157.2 (6) C48—N14—C49—C50 −1.9 (9)
Mn3—O4—C8—C13 −23.7 (11) Mn6—N14—C49—C50 177.3 (6)
O4—C8—C9—C10 178.5 (7) N14—C49—C50—N15 0.8 (10)
C13—C8—C9—C10 −0.7 (11) C48—N15—C50—C49 0.5 (10)
C8—C9—C10—C11 0.4 (13) C51—N15—C50—C49 −179.6 (8)
C9—C10—C11—C12 −0.1 (13) C53—N6—C52—N7 −0.5 (9)
C10—C11—C12—C13 0.1 (12) Mn2—N6—C52—N7 −177.4 (5)
O4—C8—C13—C12 −178.5 (7) C54—N7—C52—N6 0.5 (9)
C9—C8—C13—C12 0.7 (11) C55—N7—C52—N6 −179.1 (9)
O4—C8—C13—C14 2.7 (12) C52—N6—C53—C54 0.3 (9)
C9—C8—C13—C14 −178.2 (7) Mn2—N6—C53—C54 177.2 (6)
C11—C12—C13—C8 −0.4 (11) N6—C53—C54—N7 0.0 (10)
C11—C12—C13—C14 178.5 (7) C52—N7—C54—C53 −0.3 (9)
Mn4—O5—C14—N2 3.4 (8) C55—N7—C54—C53 179.3 (9)
Mn4—O5—C14—C13 −178.1 (5) Mn3—O17—C56—O16 47.4 (11)
O6—N2—C14—O5 0.8 (9) Mn3—O17—C56—C57 −130.8 (6)
Mn3—N2—C14—O5 −178.2 (5) Mn1—O16—C56—O17 −6.5 (11)
O6—N2—C14—C13 −177.7 (6) Mn6—O16—C56—O17 −157.8 (5)
Mn3—N2—C14—C13 3.2 (10) Mn1—O16—C56—C57 171.8 (5)
C8—C13—C14—O5 −171.6 (7) Mn6—O16—C56—C57 20.5 (10)
C12—C13—C14—O5 9.5 (10) Mn5—O19—C58—O18 −20.6 (12)
C8—C13—C14—N2 6.9 (11) Mn5—O19—C58—C59 158.0 (6)
C12—C13—C14—N2 −171.9 (7) Mn1—O18—C58—O19 5.9 (11)
Mn4—O7—C15—C20 −32.3 (11) Mn1—O18—C58—C59 −172.7 (5)
Mn4—O7—C15—C16 148.8 (6) C65—N17—C63—O21 −178.3 (13)
O7—C15—C16—C17 −179.9 (9) C64—N17—C63—O21 3.5 (19)
C20—C15—C16—C17 1.1 (14) Mn4—O20—C60—N16 177.6 (6)
C15—C16—C17—C18 −0.6 (16) O20—C60—N16—C62 −179.2 (9)
C16—C17—C18—C19 −0.2 (17) O20—C60—N16—C61 0.0 (13)
C17—C18—C19—C20 0.7 (17) C41—N10—C40—N11 0 (4)
O7—C15—C20—C19 −179.6 (8) Mn4—N10—C40—N11 −178 (2)
C16—C15—C20—C19 −0.6 (13) C40—N10—C41—C42 4 (3)
O7—C15—C20—C21 −0.7 (13) Mn4—N10—C41—C42 −178.4 (16)
C16—C15—C20—C21 178.2 (8) N10—C41—C42—N11 −6 (3)
C18—C19—C20—C15 −0.2 (15) N10—C40—N11—C42 −4 (4)
C18—C19—C20—C21 −179.2 (9) N10—C40—N11—C43 −176 (3)
Mn5—O8—C21—N3 5.0 (9) C41—C42—N11—C40 6 (3)
Mn5—O8—C21—C20 −173.0 (6) C41—C42—N11—C43 178 (3)
O9—N3—C21—O8 4.6 (10) Mn4—O22—C40B—N11B 173 (4)
Mn4—N3—C21—O8 178.2 (5) O22—C40B—N11B—C42B 7 (9)
O9—N3—C21—C20 −177.4 (6) O22—C40B—N11B—C43B 178 (7)
Mn4—N3—C21—C20 −3.8 (11) C67—C68—O23—C69 −180 (4)
C15—C20—C21—O8 −163.3 (8) C68—O23—C69—C70 175 (4)
C19—C20—C21—O8 15.5 (12) C67B—C68B—O23B—C69B 80 (5)
C15—C20—C21—N3 18.6 (12) C68B—O23B—C69B—C70B 177 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2164).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bruker (2012). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dendrinou-Samara, C., Alevizopoulou, L., Iordanidis, L., Samaras, E. & Kessissoglou, D. P. (2002). J. Inorg. Biochem. 89, 89–96. [DOI] [PubMed]
  4. Dendrinou-Samara, C., Papadopoulos, A. N., Malamatari, D. A., Tarushi, A., Raptopoulou, C. P., Terzis, A., Samaras, E. & Kessissoglou, D. P. (2005). J. Inorg. Biochem. 99, 864–875. [DOI] [PubMed]
  5. Dendrinou-Samara, C., Psomas, G., Iordanidis, L., Tangoulis, V. & Kessissoglou, D. P. (2001). Chem. Eur. J. 7, 5041–5051. [DOI] [PubMed]
  6. Emerich, B., Smith, M., Zeller, M. & Zaleski, C. M. (2010). J. Chem. Crystallogr. 40, 769–777.
  7. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  8. Kessissoglou, D. P., Kampf, J. & Pecoraro, V. L. (1994). Polyhedron, 13, 1379–1391.
  9. Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.
  10. Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. [DOI] [PubMed]
  13. Pecoraro, V. L. (1989). Inorg. Chim. Acta 155, 171–173.
  14. Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008b). CELL_NOW University of Göttingen, Germany.
  16. Sheldrick, G. M. (2009). TWINABS University of Göttingen, Germany.
  17. Stiefel, E. I. & Brown, G. F. (1972). Inorg. Chem. 11, 434–436.
  18. Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2011). Acta Cryst. E67, m1041–m1042. [DOI] [PMC free article] [PubMed]
  19. Tigyer, B. R., Zeller, M. & Zaleski, C. M. (2012). Acta Cryst. E68, m1521–m1522. [DOI] [PMC free article] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813015857/jj2164sup1.cif

e-69-0m393-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813015857/jj2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES