Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 26;69(Pt 7):m417–m418. doi: 10.1107/S1600536813017194

(3-Acetyl-4-methyl-1H-pyrazol-1-ide-5-carboxyl­ato)bis­(1,10-phenanthroline)nickel(II) 3.5-hydrate

Sergey Malinkin a, Anatoliy A Kapshuk a, Elzbieta Gumienna-Kontecka b, Elena V Prisyazhnaya c, Turganbay S Iskenderov a,*
PMCID: PMC3772441  PMID: 24046584

Abstract

The title compound, [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O, crystallizes as a neutral mononuclear complex with 3.5 solvent water mol­ecules. One of the water mol­ecules lies on an inversion centre, so that its H atoms are disordered over two sites. The coordination environment of NiII has a slightly distorted octa­hedral geometry, which is formed by one O and five N atoms belonging to the N,O-chelating pyrazol-1-ide-5-carboxyl­ate and two N,N′-chelating phenanthroline mol­ecules. In the crystal, O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving the solvent water mol­ecules and pyrazole-5-carboxyl­ate ligands form layers parallel to the ab plane. These layers are linked further via weak π–π inter­actions between two adjacent phenanthroline mol­ecules, with centroid-to-centroid distances in the range 3.886 (2)–4.018 (1) Å, together with C—H⋯π contacts, forming a three-dimensional network.

Related literature  

The work presented here continues studies of complexes based on pyrazolate ligands with transition metals, see: Klingele et al. (2009); Malinkin et al. (2009, 2012a ,b ,c ); Ng et al. (2011); Penkova et al. (2008, 2009); Meyer & Pritzkow (2000); Bauer-Siebenlist et al. (2005); Świątek-Kozłowska et al. (2000). For related structures, see: Zhong et al. (2009); Zheng et al. (2009); Bouchene et al. (2013); Fang & Wang (2010); Fritsky et al. (2004, 2006); Kanderal et al. (2005); Moroz et al. (2010). For the starting material, see: Sachse et al. (2008).graphic file with name e-69-0m417-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O

  • M r = 648.29

  • Triclinic, Inline graphic

  • a = 9.865 (3) Å

  • b = 11.659 (4) Å

  • c = 13.561 (5) Å

  • α = 91.91 (3)°

  • β = 98.85 (3)°

  • γ = 105.20 (4)°

  • V = 1482.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 170 K

  • 0.23 × 0.18 × 0.11 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.857, T max = 0.929

  • 12624 measured reflections

  • 6830 independent reflections

  • 3040 reflections with I > 2σ(I)

  • R int = 0.070

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.153

  • S = 0.85

  • 6830 reflections

  • 405 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017194/sj5334sup1.cif

e-69-0m417-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017194/sj5334Isup2.hkl

e-69-0m417-Isup2.hkl (334.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

N1—Ni1 2.041 (4)
N3—Ni1 2.085 (4)
N4—Ni1 2.080 (4)
N5—Ni1 2.078 (3)
N6—Ni1 2.093 (4)
O2—Ni1 2.066 (3)

Table 2. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.95 2.31 3.088 (6) 139
O4—H4B⋯N2i 0.94 2.01 2.906 (6) 157
O5—H5A⋯O4ii 0.86 2.02 2.875 (6) 172
O5—H5B⋯O1 0.90 2.00 2.787 (5) 145
O6—H6D⋯O5 0.87 2.05 2.895 (6) 163
O6—H6E⋯O2 0.88 1.98 2.827 (5) 163
O7—H7D⋯O3 0.89 2.16 2.964 (4) 150
O7—H7E⋯O4 0.89 2.02 2.821 (5) 149
C12—H12⋯Cg1iii 0.93 2.77 3.646 (6) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program).

supplementary crystallographic information

Comment

The bridging nature of pyrazolate provides the possibility to bring metal ions into close proximity, which results in arrays with interesting magnetic and catalytic properties (Klingele et al., 2009; Malinkin et al., 2012b; Ng et al., 2011). Therefore, research focused on pyrazolate complexes with higher nuclearity is of special interest in the field of supramolecular and bioinorganic chemistry (Penkova et al., 2008, 2009; Meyer & Pritzkow, 2000; Bauer-Siebenlist et al., 2005). Mononuclear pyrazolate-based complexes bearing non-coordinated donor groups can potentially be used as building blocks for the synthesis of discrete clusters as well as extended frameworks that offer a wide range of possible applications. On the other hand, phenanthroline is often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2004, 2006). Herein we report the synthesis and crystal structure of the title compound, (I), as a continuation of our earlier work devoted to complexes based on non-symmetrical pyrazole ligands (Penkova et al., 2008; Malinkin et al., 2012a,b), in particular, 3-acetyl-4-methyl-1H-pyrazole-5 carboxylic acid (Malinkin et al., 2009, 2012c).

As shown in Figure 1, the NiII ion is coordinated by one pyrazolate ligand viaN,O-chelating groups and two N,N-chelating phenanthroline molecules forming a slightly distorted octahedral coordination environment. The Ni—Npz, Ni—Nphen and Ni—O distances are consistent with the reported data for related complexes (Fang & Wang, 2010; Zheng et al., 2009; Zhong et al., 2009; Bouchene et al., 2013).

The coordinated pyrazolate ligand exhibits C—C, C—N, N—N bond lengths which are normal for bridging pyrazolate rings (Penkova et al., 2008; Malinkin et al., 2012a,b; Świątek-Kozłowska et al., 2000). The C—O bond lengths in the deprotonated carboxylic groups differs significantly (1.239 (2) and 1.292 (2) Å) which is typical for monodentate coordinated carboxylates (Malinkin et al., 2012a,b). Also the C—N and C—C bond lengths in the phenanthroline ligand are similar to those separations observed in other 2-substituted pyridine derivatives (Kanderal et al., 2005; Moroz et al., 2010).

In the crystal packing the complex molecules are associated via intermolecular hydrogen bonds (Table 1) that involve O—H and N—H interactions between the donor atoms of pyrazolate ligand and solvate water molecules forming layers which are parallel to the xy plane (Fig. 2). In addition layers are stabilized by a weak π–π interactions between phenanthroline moieties with intercentroid distances of 4.018 (1) Å. Further complex species are united into three-dimensional motif through a π–π interactions found between two adjacent phenanthroline molecules belonging to the different layers (intercentroid distances 3.886 (2) and 3.950 (2) Å) and a C—H(phenanthroline)···π(pyrazole) contacts (the shortest H—centroid separation is around 2.77 Å).

Experimental

The compound was prepared by addition of 4 ml of a methanolic solution containing 0.0360 g (0.2 mmol) of phenanthroline and 0.0366 g (0.1 mmol) Ni(ClO4)2.6H2O to a mixture containing 0.0167 g (0.1 mmol) L (Sachse et al., 2008) and 0.2 ml of aqueous NaOH solution (0.1 M) in 5 ml methanol.

Light-green crystals appeared after several days. Yield: 0.0227 g (35%). Elemental analysis calc. (%) for C31H29N6NiO6.5: C 57.38; H 4.47; N 12.96; found: C 57.22; H 4.30; N 13.05.

Refinement

The OH and NH hydrogen atoms were located from the difference Fourier map, and their positional and isotropic thermal parameters were included into the further stages of refinement. The C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.95–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).

Large value of ratio Ueq(max)/Ueq(min) for O6 and O7 is caused by a slight disorder of the atoms. For this reason a command 'ISOR' was applied as a weak restraint.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A portion of the packing, viewed down the y axis. Intermolecular hydrogen bonds link the molecules into a two-dimensional network. Hydrogen bonds and π-interactions are shown as red and black dashed lines, respectively. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 2; (iii) -x + 1, -y + 1, -z + 1.]

Crystal data

[Ni(C7H6N2O3)(C12H8N2)2]·3.5H2O Z = 2
Mr = 648.29 F(000) = 674
Triclinic, P1 Dx = 1.452 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.865 (3) Å Cell parameters from 11133 reflections
b = 11.659 (4) Å θ = 3.4–36.5°
c = 13.561 (5) Å µ = 0.71 mm1
α = 91.91 (3)° T = 170 K
β = 98.85 (3)° Block, light green
γ = 105.20 (4)° 0.23 × 0.18 × 0.11 mm
V = 1482.8 (9) Å3

Data collection

Nonius KappaCCD diffractometer 6830 independent reflections
Radiation source: fine-focus sealed tube 3040 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromator Rint = 0.070
Detector resolution: 9 pixels mm-1 θmax = 28.6°, θmin = 3.0°
φ scans and ω scans with κ offset h = −12→12
Absorption correction: numerical (DENZO/SCALEPACK; Otwinowski & Minor, 1997) k = −15→15
Tmin = 0.857, Tmax = 0.929 l = −18→18
12624 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0675P)2] where P = (Fo2 + 2Fc2)/3
6830 reflections (Δ/σ)max = 0.001
405 parameters Δρmax = 1.12 e Å3
13 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.6503 (4) 0.6632 (3) 0.7897 (2) 0.0294 (9)
N2 0.5838 (4) 0.5594 (3) 0.8208 (2) 0.0322 (10)
N3 0.7221 (4) 0.6920 (3) 0.5843 (3) 0.0331 (10)
N4 0.8913 (4) 0.5870 (3) 0.6988 (2) 0.0303 (9)
N5 0.9485 (4) 0.7889 (3) 0.8732 (2) 0.0293 (9)
N6 1.0125 (4) 0.8544 (3) 0.6950 (2) 0.0299 (9)
O1 0.5691 (4) 0.9471 (3) 0.7919 (2) 0.0416 (9)
O2 0.7478 (3) 0.8848 (3) 0.7411 (2) 0.0318 (8)
O3 0.2663 (4) 0.4867 (3) 0.9303 (3) 0.0518 (10)
Ni1 0.82850 (7) 0.73904 (5) 0.73104 (4) 0.0312 (2)
C1 0.6312 (6) 0.8686 (4) 0.7797 (3) 0.0316 (12)
C2 0.5759 (5) 0.7458 (4) 0.8088 (3) 0.0315 (11)
C3 0.4603 (5) 0.6920 (4) 0.8544 (3) 0.0332 (12)
C4 0.4690 (5) 0.5759 (4) 0.8588 (3) 0.0287 (11)
C5 0.3683 (6) 0.4731 (4) 0.8924 (3) 0.0365 (13)
C6 0.3883 (6) 0.3506 (4) 0.8784 (4) 0.0508 (15)
H6A 0.4691 0.3442 0.9250 0.076*
H6B 0.4038 0.3372 0.8113 0.076*
H6C 0.3045 0.2922 0.8898 0.076*
C7 0.3526 (5) 0.7476 (4) 0.8889 (4) 0.0431 (13)
H7A 0.3621 0.7487 0.9605 0.065*
H7B 0.2584 0.7018 0.8592 0.065*
H7C 0.3686 0.8277 0.8691 0.065*
C8 0.6363 (5) 0.7446 (4) 0.5314 (3) 0.0383 (13)
H8 0.6268 0.8159 0.5584 0.046*
C9 0.5574 (5) 0.6988 (5) 0.4354 (3) 0.0458 (14)
H9 0.4957 0.7376 0.4009 0.055*
C10 0.5754 (6) 0.5954 (5) 0.3951 (3) 0.0482 (16)
H10 0.5254 0.5635 0.3321 0.058*
C11 0.6679 (5) 0.5375 (4) 0.4475 (3) 0.0382 (13)
C12 0.6942 (6) 0.4303 (5) 0.4122 (4) 0.0501 (16)
H12 0.6486 0.3956 0.3489 0.060*
C13 0.7818 (6) 0.3779 (4) 0.4666 (4) 0.0483 (15)
H13 0.7965 0.3083 0.4404 0.058*
C14 0.8553 (6) 0.4280 (4) 0.5668 (3) 0.0404 (14)
C15 0.9472 (6) 0.3781 (4) 0.6280 (4) 0.0462 (14)
H15 0.9663 0.3088 0.6052 0.055*
C16 1.0106 (5) 0.4308 (4) 0.7228 (4) 0.0425 (13)
H16 1.0728 0.3985 0.7644 0.051*
C17 0.9775 (5) 0.5347 (4) 0.7536 (4) 0.0382 (13)
H17 1.0194 0.5697 0.8174 0.046*
C18 0.7407 (5) 0.5897 (4) 0.5443 (3) 0.0318 (12)
C19 0.8312 (5) 0.5333 (4) 0.6038 (3) 0.0329 (12)
C20 0.9158 (5) 0.7544 (4) 0.9607 (3) 0.0348 (12)
H20 0.8343 0.6925 0.9614 0.042*
C21 1.0000 (5) 0.8078 (4) 1.0528 (3) 0.0360 (12)
H21 0.9734 0.7815 1.1128 0.043*
C22 1.1195 (5) 0.8975 (4) 1.0534 (3) 0.0331 (12)
H22 1.1747 0.9339 1.1138 0.040*
C23 1.1596 (5) 0.9353 (4) 0.9623 (3) 0.0299 (11)
C24 1.2904 (5) 1.0252 (4) 0.9547 (3) 0.0367 (12)
H24 1.3502 1.0638 1.0128 0.044*
C25 1.3267 (5) 1.0535 (4) 0.8642 (3) 0.0390 (13)
H25 1.4124 1.1094 0.8612 0.047*
C26 1.2346 (5) 0.9984 (4) 0.7734 (3) 0.0333 (12)
C27 1.2673 (6) 1.0234 (4) 0.6772 (3) 0.0456 (14)
H27 1.3521 1.0784 0.6704 0.055*
C28 1.1733 (6) 0.9662 (4) 0.5937 (4) 0.0477 (15)
H28 1.1940 0.9816 0.5300 0.057*
C29 1.0464 (5) 0.8846 (4) 0.6058 (3) 0.0373 (12)
H29 0.9819 0.8492 0.5487 0.045*
C30 1.0704 (5) 0.8775 (3) 0.8739 (3) 0.0240 (10)
C31 1.1071 (5) 0.9121 (4) 0.7786 (3) 0.0284 (11)
O4 0.2548 (5) 0.6130 (4) 1.1314 (3) 0.0849 (15)
H4A 0.3056 0.6009 1.0797 0.127*
H4B 0.2955 0.5559 1.1627 0.127*
O5 0.6423 (4) 1.1780 (3) 0.7310 (3) 0.0707 (13)
H5A 0.6793 1.2428 0.7689 0.106*
H5B 0.5979 1.1190 0.7654 0.106*
O6 0.8621 (6) 1.0978 (3) 0.6534 (3) 0.1067 (19)
H6D 0.8036 1.1361 0.6718 0.160*
H6E 0.8406 1.0267 0.6755 0.160*
O7 0.0000 0.5000 1.0000 0.383 (10)
H7D 0.0556 0.4810 0.9600 0.575* 0.50
H7E 0.0563 0.5411 1.0543 0.575* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.040 (2) 0.0185 (19) 0.0159 (17) −0.0093 (18) −0.0078 (16) −0.0005 (14)
N2 0.046 (3) 0.020 (2) 0.0188 (18) −0.0036 (19) −0.0079 (18) 0.0005 (15)
N3 0.043 (3) 0.023 (2) 0.027 (2) −0.0004 (19) 0.0018 (19) 0.0016 (16)
N4 0.041 (3) 0.021 (2) 0.0210 (18) −0.0037 (18) 0.0042 (17) 0.0008 (15)
N5 0.040 (3) 0.0186 (19) 0.0217 (18) −0.0043 (17) 0.0037 (17) −0.0003 (15)
N6 0.040 (2) 0.023 (2) 0.0198 (18) 0.0001 (18) −0.0009 (17) −0.0015 (15)
O1 0.054 (2) 0.0216 (18) 0.045 (2) 0.0063 (17) 0.0017 (17) 0.0011 (14)
O2 0.035 (2) 0.0276 (18) 0.0281 (17) 0.0016 (15) 0.0052 (15) 0.0003 (13)
O3 0.054 (3) 0.043 (2) 0.053 (2) −0.0003 (19) 0.015 (2) 0.0153 (17)
Ni1 0.0433 (4) 0.0227 (3) 0.0173 (3) −0.0043 (3) −0.0027 (2) −0.0026 (2)
C1 0.045 (3) 0.023 (3) 0.021 (2) 0.005 (2) −0.004 (2) 0.0005 (19)
C2 0.042 (3) 0.023 (2) 0.023 (2) 0.003 (2) −0.004 (2) −0.0050 (18)
C3 0.043 (3) 0.025 (3) 0.022 (2) 0.001 (2) −0.009 (2) 0.0006 (19)
C4 0.032 (3) 0.024 (2) 0.026 (2) 0.004 (2) −0.002 (2) −0.0038 (18)
C5 0.044 (3) 0.032 (3) 0.026 (2) 0.001 (2) 0.001 (2) 0.007 (2)
C6 0.068 (4) 0.026 (3) 0.044 (3) −0.012 (3) 0.008 (3) 0.003 (2)
C7 0.048 (3) 0.029 (3) 0.051 (3) 0.007 (3) 0.008 (3) 0.007 (2)
C8 0.046 (3) 0.034 (3) 0.027 (2) −0.004 (2) 0.007 (2) 0.003 (2)
C9 0.047 (3) 0.048 (3) 0.028 (2) −0.007 (3) −0.004 (2) 0.005 (2)
C10 0.053 (4) 0.053 (3) 0.018 (2) −0.018 (3) −0.002 (2) 0.001 (2)
C11 0.045 (3) 0.036 (3) 0.022 (2) −0.010 (2) 0.007 (2) −0.005 (2)
C12 0.060 (4) 0.043 (3) 0.031 (3) −0.016 (3) 0.010 (3) −0.012 (2)
C13 0.062 (4) 0.031 (3) 0.041 (3) −0.014 (3) 0.023 (3) −0.011 (2)
C14 0.054 (4) 0.029 (3) 0.032 (3) −0.004 (3) 0.016 (3) −0.002 (2)
C15 0.051 (4) 0.027 (3) 0.056 (3) −0.004 (3) 0.025 (3) −0.004 (2)
C16 0.046 (3) 0.033 (3) 0.051 (3) 0.011 (3) 0.014 (3) 0.009 (2)
C17 0.042 (3) 0.030 (3) 0.036 (3) 0.000 (2) 0.005 (2) 0.002 (2)
C18 0.040 (3) 0.025 (2) 0.022 (2) −0.008 (2) 0.005 (2) −0.0001 (19)
C19 0.039 (3) 0.025 (2) 0.028 (2) −0.008 (2) 0.014 (2) −0.0038 (19)
C20 0.041 (3) 0.030 (3) 0.023 (2) −0.006 (2) −0.003 (2) 0.0000 (19)
C21 0.047 (3) 0.029 (3) 0.024 (2) 0.000 (2) 0.001 (2) −0.0022 (19)
C22 0.042 (3) 0.028 (3) 0.022 (2) 0.005 (2) −0.006 (2) −0.0061 (19)
C23 0.037 (3) 0.020 (2) 0.027 (2) 0.004 (2) −0.001 (2) −0.0056 (18)
C24 0.040 (3) 0.024 (2) 0.036 (3) −0.005 (2) −0.001 (2) −0.006 (2)
C25 0.043 (3) 0.021 (2) 0.044 (3) −0.003 (2) 0.002 (2) −0.002 (2)
C26 0.041 (3) 0.023 (2) 0.030 (2) −0.002 (2) 0.005 (2) 0.0035 (19)
C27 0.051 (4) 0.035 (3) 0.042 (3) −0.006 (3) 0.010 (3) 0.004 (2)
C28 0.059 (4) 0.046 (3) 0.030 (3) −0.002 (3) 0.010 (3) 0.010 (2)
C29 0.045 (3) 0.037 (3) 0.025 (2) 0.002 (2) 0.007 (2) 0.006 (2)
C30 0.031 (3) 0.015 (2) 0.023 (2) 0.0038 (19) 0.0004 (19) −0.0037 (17)
C31 0.036 (3) 0.018 (2) 0.024 (2) −0.001 (2) 0.001 (2) 0.0013 (17)
O4 0.101 (4) 0.065 (3) 0.118 (4) 0.042 (3) 0.065 (3) 0.054 (3)
O5 0.067 (3) 0.044 (2) 0.093 (3) 0.008 (2) −0.002 (2) 0.030 (2)
O6 0.205 (6) 0.043 (3) 0.097 (3) 0.033 (3) 0.098 (4) 0.027 (2)
O7 0.51 (2) 0.397 (17) 0.303 (16) 0.246 (16) 0.044 (14) 0.047 (13)

Geometric parameters (Å, º)

N1—N2 1.333 (4) C12—H12 0.9300
N1—Ni1 2.041 (4) C12—C13 1.333 (7)
N1—C2 1.394 (6) C13—H13 0.9300
N2—C4 1.368 (6) C13—C14 1.461 (6)
N3—Ni1 2.085 (4) C14—C15 1.387 (7)
N3—C8 1.312 (6) C14—C19 1.401 (6)
N3—C18 1.361 (5) C15—H15 0.9300
N4—Ni1 2.080 (4) C15—C16 1.386 (7)
N4—C17 1.324 (6) C16—H16 0.9300
N4—C19 1.386 (5) C16—C17 1.401 (6)
N5—Ni1 2.078 (3) C17—H17 0.9300
N5—C20 1.324 (5) C18—C19 1.415 (7)
N5—C30 1.363 (5) C20—H20 0.9300
N6—Ni1 2.093 (4) C20—C21 1.413 (5)
N6—C29 1.337 (5) C21—H21 0.9300
N6—C31 1.379 (5) C21—C22 1.355 (6)
O1—C1 1.247 (5) C22—H22 0.9300
O2—Ni1 2.066 (3) C22—C23 1.404 (6)
O2—C1 1.308 (6) C23—C24 1.453 (6)
O3—C5 1.240 (6) C23—C30 1.406 (5)
C1—C2 1.482 (6) C24—H24 0.9300
C2—C3 1.395 (6) C24—C25 1.358 (6)
C3—C4 1.382 (6) C25—H25 0.9300
C3—C7 1.503 (7) C25—C26 1.433 (6)
C4—C5 1.477 (6) C26—C27 1.413 (6)
C5—C6 1.502 (7) C26—C31 1.403 (6)
C6—H6A 0.9600 C27—H27 0.9300
C6—H6B 0.9600 C27—C28 1.374 (6)
C6—H6C 0.9600 C28—H28 0.9300
C7—H7A 0.9600 C28—C29 1.396 (6)
C7—H7B 0.9600 C29—H29 0.9300
C7—H7C 0.9600 C30—C31 1.438 (6)
C8—H8 0.9300 O4—H4A 0.9495
C8—C9 1.418 (6) O4—H4B 0.9445
C9—H9 0.9300 O5—H5A 0.8599
C9—C10 1.371 (7) O5—H5B 0.9001
C10—H10 0.9300 O6—H6D 0.8749
C10—C11 1.396 (7) O6—H6E 0.8751
C11—C12 1.424 (7) O7—H7D 0.8900
C11—C18 1.427 (5) O7—H7E 0.8900
N2—N1—Ni1 140.1 (3) C10—C11—C12 125.1 (5)
N2—N1—C2 107.9 (4) C10—C11—C18 117.2 (5)
C2—N1—Ni1 111.9 (3) C12—C11—C18 117.7 (5)
N1—N2—C4 107.4 (4) C11—C12—H12 118.8
C8—N3—Ni1 127.8 (3) C13—C12—C11 122.3 (5)
C8—N3—C18 118.8 (4) C13—C12—H12 118.8
C18—N3—Ni1 113.2 (3) C12—C13—H13 119.4
C17—N4—Ni1 130.8 (3) C12—C13—C14 121.2 (5)
C17—N4—C19 116.1 (4) C14—C13—H13 119.4
C19—N4—Ni1 113.1 (3) C15—C14—C13 124.4 (5)
C20—N5—Ni1 128.9 (3) C15—C14—C19 117.7 (4)
C20—N5—C30 117.7 (4) C19—C14—C13 117.9 (5)
C30—N5—Ni1 113.1 (3) C14—C15—H15 119.8
C29—N6—Ni1 130.3 (3) C16—C15—C14 120.4 (5)
C29—N6—C31 117.0 (4) C16—C15—H15 119.8
C31—N6—Ni1 112.6 (3) C15—C16—H16 121.3
C1—O2—Ni1 116.3 (3) C15—C16—C17 117.4 (5)
N1—Ni1—N3 92.73 (14) C17—C16—H16 121.3
N1—Ni1—N4 99.54 (15) N4—C17—C16 125.1 (4)
N1—Ni1—N5 91.36 (14) N4—C17—H17 117.4
N1—Ni1—N6 165.31 (14) C16—C17—H17 117.4
N1—Ni1—O2 80.47 (15) N3—C18—C11 121.8 (5)
N3—Ni1—N6 96.35 (14) N3—C18—C19 117.6 (4)
N4—Ni1—N3 79.56 (15) C19—C18—C11 120.5 (4)
N4—Ni1—N6 93.46 (15) N4—C19—C14 123.1 (5)
N5—Ni1—N3 175.80 (16) N4—C19—C18 116.5 (4)
N5—Ni1—N4 98.84 (15) C14—C19—C18 120.4 (4)
N5—Ni1—N6 79.83 (14) N5—C20—H20 118.7
O2—Ni1—N3 91.62 (14) N5—C20—C21 122.5 (4)
O2—Ni1—N4 171.18 (13) C21—C20—H20 118.7
O2—Ni1—N5 89.97 (13) C20—C21—H21 120.1
O2—Ni1—N6 87.73 (14) C22—C21—C20 119.7 (4)
O1—C1—O2 124.6 (4) C22—C21—H21 120.1
O1—C1—C2 121.4 (5) C21—C22—H22 120.2
O2—C1—C2 114.0 (5) C21—C22—C23 119.6 (4)
N1—C2—C1 117.3 (4) C23—C22—H22 120.2
N1—C2—C3 109.9 (4) C22—C23—C24 123.8 (4)
C3—C2—C1 132.8 (5) C22—C23—C30 117.2 (4)
C2—C3—C7 128.1 (4) C30—C23—C24 118.8 (4)
C4—C3—C2 102.8 (4) C23—C24—H24 119.5
C4—C3—C7 129.1 (4) C25—C24—C23 121.0 (4)
N2—C4—C3 112.0 (4) C25—C24—H24 119.5
N2—C4—C5 119.7 (4) C24—C25—H25 119.6
C3—C4—C5 128.2 (5) C24—C25—C26 120.9 (4)
O3—C5—C4 120.8 (5) C26—C25—H25 119.6
O3—C5—C6 119.8 (5) C27—C26—C25 123.4 (4)
C4—C5—C6 119.4 (5) C31—C26—C25 119.3 (4)
C5—C6—H6A 109.5 C31—C26—C27 117.3 (4)
C5—C6—H6B 109.5 C26—C27—H27 120.1
C5—C6—H6C 109.5 C28—C27—C26 119.7 (5)
H6A—C6—H6B 109.5 C28—C27—H27 120.1
H6A—C6—H6C 109.5 C27—C28—H28 120.5
H6B—C6—H6C 109.5 C27—C28—C29 119.1 (4)
C3—C7—H7A 109.5 C29—C28—H28 120.5
C3—C7—H7B 109.5 N6—C29—C28 123.7 (4)
C3—C7—H7C 109.5 N6—C29—H29 118.2
H7A—C7—H7B 109.5 C28—C29—H29 118.2
H7A—C7—H7C 109.5 N5—C30—C23 123.2 (4)
H7B—C7—H7C 109.5 N5—C30—C31 117.3 (3)
N3—C8—H8 118.2 C23—C30—C31 119.5 (4)
N3—C8—C9 123.6 (5) N6—C31—C26 123.1 (4)
C9—C8—H8 118.2 N6—C31—C30 116.4 (4)
C8—C9—H9 121.2 C26—C31—C30 120.5 (4)
C10—C9—C8 117.7 (5) H4A—O4—H4B 83.7
C10—C9—H9 121.2 H5A—O5—H5B 111.0
C9—C10—H10 119.6 H6D—O6—H6E 107.9
C9—C10—C11 120.8 (4) H7D—O7—H7E 107.6
C11—C10—H10 119.6

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the N1/N2/C2/C3/C4 pyrazole ring.

D—H···A D—H H···A D···A D—H···A
O4—H4A···O3 0.95 2.31 3.088 (6) 139
O4—H4B···N2i 0.94 2.01 2.906 (6) 157
O5—H5A···O4ii 0.86 2.02 2.875 (6) 172
O5—H5B···O1 0.90 2.00 2.787 (5) 145
O6—H6D···O5 0.87 2.05 2.895 (6) 163
O6—H6E···O2 0.88 1.98 2.827 (5) 163
O7—H7D···O3 0.89 2.16 2.964 (4) 150
O7—H7E···O4 0.89 2.02 2.821 (5) 149
C12—H12···Cg1iii 0.93 2.77 3.646 (6) 158

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5334).

References

  1. Bauer-Siebenlist, B., Dechert, S. & Meyer, F. (2005). Chem. Eur. J. 11, 5343–5352. [DOI] [PubMed]
  2. Bouchene, R., Khadri, A., Bouacida, S., Berrah, F. & Merazig, H. (2013). Acta Cryst. E69, m309–m310. [DOI] [PMC free article] [PubMed]
  3. Fang, Z. & Wang, J. (2010). Acta Cryst. E66, m1285. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. [DOI] [PubMed]
  6. Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.
  7. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  8. Klingele, J., Dechert, S. & Meyer, F. (2009). Coord. Chem. Rev. 253, 2698–2741.
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Malinkin, S. O., Moroz, Y. S., Penkova, L., Haukka, M., Szebesczyk, A., Gumienna-Kontecka, E., Pavlenko, V. A., Nordlander, E., Meyer, F. & Fritsky, I. O. (2012c). Inorg. Chim. Acta, 392, 322–330.
  11. Malinkin, S. O., Penkova, L., Moroz, Y. S., Bon, V., Gumienna-Kontecka, E., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012b). Polyhedron, 37, 77–84.
  12. Malinkin, S., Penkova, L., Moroz, Y. S., Haukka, M., Maciag, A., Gumienna-Kontecka, E., Pavlova, S., Nordlander, E., Fritsky, I. O. & Pavlenko, V. A. (2012a). Eur. J. Inorg. Chem. pp. 1639–1649.
  13. Malinkin, S., Penkova, L., Pavlenko, V. A., Haukka, M. & Fritsky, I. O. (2009). Acta Cryst. E65, m1247–m1248. [DOI] [PMC free article] [PubMed]
  14. Meyer, F. & Pritzkow, H. (2000). Angew. Chem. Int. Ed. 39, 2112–2115. [PubMed]
  15. Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. [DOI] [PubMed]
  16. Ng, G. K.-Y., Ziller, J. W. & Borovik, A. S. (2011). Inorg. Chem. 50, 7922–7924. [DOI] [PMC free article] [PubMed]
  17. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  18. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  19. Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436.
  20. Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. [DOI] [PubMed]
  21. Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
  24. Zheng, Z.-B., Wu, R.-T., Li, J.-K. & Sun, Y.-F. (2009). J. Mol. Struct. 928, 78–84.
  25. Zhong, F., Ying, S., Liu, J., Duan, D., Shi, T. & Wang, Q. (2009). Chem. Res. Appl. 21, 385–391.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017194/sj5334sup1.cif

e-69-0m417-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017194/sj5334Isup2.hkl

e-69-0m417-Isup2.hkl (334.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES