Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 29;69(Pt 7):m425. doi: 10.1107/S1600536813017224

Bis(μ-6-meth­oxy-2-{[(3-oxidoprop­yl)imino]­meth­yl}phenolato)nickel(II) methanol monosolvate

Fan-Kun Meng a,*, Xin Zhang a, Hua Yi a, De-Hui Zhang a, Jun-Ying Jia a
PMCID: PMC3772446  PMID: 24046589

Abstract

The mol­ecular structure of the title complex, [Ni2(C11H13NO3)2]·CH3OH, contains two NiII atoms and two doubly deprotonated 6-meth­oxy-2-{[(3-oxidoprop­yl)imino]­meth­yl}phenolate ligands. The NiII atoms are each four-coordinated in a distorted square-planar geometry by three O atoms and one N atom derived from the phenolate ligands. The solvent mol­ecule is linked to the complex mol­ecule by two O—H⋯O hydrogen bonds.

Related literature  

For the structures and potential applications in magnetism and catalysis of metal clusters, see: Long et al. (2010); Mondal et al. (2011). Schiff bases have been widely investigated in this regard, see: Sarwar et al. (2011). For cluster complexes based on Schiff bases, see: Costes et al. (1998); Mondal et al. (2011). graphic file with name e-69-0m425-scheme1.jpg

Experimental  

Crystal data  

  • [Ni2(C11H13NO3)2]·CH4O

  • M r = 563.87

  • Monoclinic, Inline graphic

  • a = 23.673 (5) Å

  • b = 8.3124 (17) Å

  • c = 25.546 (5) Å

  • β = 113.25 (3)°

  • V = 4618.6 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 150 K

  • 0.26 × 0.24 × 0.22 mm

Data collection  

  • Rigaku SCX-mini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) T min = 0.669, T max = 0.709

  • 19153 measured reflections

  • 5257 independent reflections

  • 4285 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.080

  • S = 1.01

  • 5257 reflections

  • 312 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017224/qm2096sup1.cif

e-69-0m425-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017224/qm2096Isup2.hkl

e-69-0m425-Isup2.hkl (257.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1 1.9107 (16)
Ni1—O5 1.9208 (16)
Ni1—O2 1.9224 (16)
Ni1—N1 1.9314 (19)
Ni2—O4 1.8936 (16)
Ni2—O2 1.9197 (16)
Ni2—O5 1.9208 (16)
Ni2—N2 1.9366 (19)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O1 0.86 (1) 2.05 (1) 2.893 (3) 170 (3)
O7—H7⋯O3 0.86 (1) 2.64 (3) 3.178 (3) 122 (3)

Acknowledgments

This work was supported by the Foundation of Daqing Normal University (grant No. 11ZR01).

supplementary crystallographic information

Comment

Interest in the rational design and synthesis of metal clusters has mushroomed recently, due to their fascinating structures and potential applications in magnetism and catalysis (Mondal et al. 2011; Long et al. 2010). Schiff bases are widely investigated in this regard (Sarwar et al. 2011). Previous reports of a series of 3d cluster complexes based on Schiff bases, have appeared (Mondal et al. 2011; Costes et al. 1998). Herein, we report a new NiII complex assembled from the flexible schiff base (2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenol).

As shown in Fig.1, The molecular structure consists of two NiII atoms and two doubly deprotonated 2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenols. The compound crystallized with one molecule of methanol per asymmetric unit. The methanol is hydrogen bonded to O1 and O3. The NiII atoms are four-coordinated. Four coordination arises from three O and one N atoms derived from two different ligands.The Ni—O distances range from 1.8936 (16)to 1.9208 (16) Å and the Ni—N distances range from 1.9314 (19) to 1.9366 (19) Å, while the O—Ni—O angles range from 76.22 (7) to 168.20 (6)° and the O—Ni—N angles range from 94.61 (8) to 170.39 (8)°.

Experimental

Treatment of 2-(((3-hydroxypropyl)imino)methyl)-6-methoxyphenol (0.1 mmol, 0.0209 g) with NiCl2(0.1 mmol, 0.0238 g) in MeOH (30 ml) gave a green solution. This reaction mixture was stirred for 30 min and then filtered. The solution then stood without perturbation for several days. Green crystals were collected by filtration and air-dried.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic, methylene and methine C—H = 0.948–0.991 Å and the methyl C—H = 0.979–0.981 Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, methylene and methine) and 1.5Ueq (C-methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Ni2(C11H13NO3)2]·CH4O F(000) = 2352
Mr = 563.87 Dx = 1.622 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4060 reflections
a = 23.673 (5) Å θ = 3.0–25.0°
b = 8.3124 (17) Å µ = 1.68 mm1
c = 25.546 (5) Å T = 150 K
β = 113.25 (3)° Strip, green
V = 4618.6 (19) Å3 0.26 × 0.24 × 0.22 mm
Z = 8

Data collection

Rigaku SCX-mini diffractometer 5257 independent reflections
Radiation source: fine-focus sealed tube 4285 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 0 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scan h = −30→30
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) k = −10→10
Tmin = 0.669, Tmax = 0.709 l = −33→29
19153 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.035P)2 + 2.8P] where P = (Fo2 + 2Fc2)/3
5257 reflections (Δ/σ)max = 0.008
312 parameters Δρmax = 0.66 e Å3
1 restraint Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.273493 (12) 0.05940 (4) 0.051281 (10) 0.01554 (8)
Ni2 0.246815 (12) 0.08519 (4) 0.157085 (11) 0.01621 (8)
O1 0.34489 (7) 0.1069 (2) 0.03665 (6) 0.0228 (4)
O2 0.21543 (7) −0.0084 (2) 0.08231 (6) 0.0250 (4)
O3 0.44965 (7) 0.2040 (2) 0.03304 (7) 0.0304 (4)
O4 0.17478 (7) 0.0344 (2) 0.16894 (6) 0.0228 (4)
O5 0.30896 (7) 0.1335 (2) 0.12876 (6) 0.0243 (4)
O6 0.05845 (7) 0.0169 (2) 0.15204 (7) 0.0312 (4)
N1 0.22146 (8) 0.0105 (3) −0.02692 (8) 0.0226 (4)
N2 0.29151 (8) 0.1639 (2) 0.23379 (7) 0.0216 (4)
C1 0.34845 (10) 0.1070 (3) −0.01367 (9) 0.0200 (5)
C2 0.40454 (11) 0.1544 (3) −0.01745 (10) 0.0233 (5)
C3 0.41158 (12) 0.1499 (3) −0.06854 (10) 0.0274 (5)
H3A 0.4497 0.1801 −0.0699 0.033*
C4 0.36276 (12) 0.1009 (3) −0.11851 (10) 0.0289 (6)
H4A 0.3680 0.0963 −0.1535 0.035*
C5 0.30789 (12) 0.0601 (3) −0.11677 (10) 0.0265 (5)
H5A 0.2746 0.0300 −0.1509 0.032*
C6 0.29953 (11) 0.0617 (3) −0.06476 (9) 0.0216 (5)
C7 0.23979 (11) 0.0173 (3) −0.06808 (9) 0.0232 (5)
H7A 0.2103 −0.0104 −0.1048 0.028*
C8 0.15658 (10) −0.0337 (3) −0.04174 (10) 0.0274 (6)
H8A 0.1390 −0.0773 −0.0810 0.033*
H8B 0.1330 0.0638 −0.0408 0.033*
C9 0.15020 (11) −0.1576 (3) −0.00104 (10) 0.0271 (5)
H9A 0.1817 −0.2423 0.0054 0.033*
H9B 0.1093 −0.2090 −0.0187 0.033*
C10 0.15745 (10) −0.0860 (3) 0.05594 (10) 0.0260 (5)
H10A 0.1241 −0.0072 0.0501 0.031*
H10B 0.1539 −0.1723 0.0812 0.031*
C11 0.50708 (11) 0.2516 (4) 0.03119 (12) 0.0367 (6)
H11A 0.5356 0.2844 0.0694 0.055*
H11B 0.5003 0.3420 0.0048 0.055*
H11C 0.5246 0.1609 0.0182 0.055*
C12 0.15950 (10) 0.1012 (3) 0.20764 (9) 0.0205 (5)
C13 0.09631 (11) 0.0956 (3) 0.20039 (10) 0.0249 (5)
C14 0.07727 (12) 0.1647 (3) 0.23951 (10) 0.0286 (5)
H14A 0.0349 0.1636 0.2329 0.034*
C15 0.11962 (12) 0.2371 (3) 0.28913 (10) 0.0299 (6)
H15A 0.1062 0.2816 0.3165 0.036*
C16 0.18039 (12) 0.2430 (3) 0.29772 (10) 0.0272 (5)
H16A 0.2092 0.2905 0.3316 0.033*
C17 0.20091 (10) 0.1796 (3) 0.25705 (9) 0.0214 (5)
C18 0.26536 (11) 0.1982 (3) 0.26820 (9) 0.0224 (5)
H18A 0.2910 0.2397 0.3045 0.027*
C19 0.35845 (10) 0.1872 (3) 0.25486 (9) 0.0250 (5)
H19A 0.3790 0.0810 0.2624 0.030*
H19B 0.3728 0.2472 0.2913 0.030*
C20 0.37658 (10) 0.2792 (3) 0.21225 (9) 0.0243 (5)
H20A 0.3505 0.3763 0.1998 0.029*
H20B 0.4198 0.3154 0.2316 0.029*
C21 0.37039 (10) 0.1813 (3) 0.16008 (9) 0.0240 (5)
H21A 0.3849 0.2464 0.1353 0.029*
H21B 0.3968 0.0846 0.1722 0.029*
C22 −0.00543 (12) 0.0121 (4) 0.14189 (13) 0.0403 (7)
H22A −0.0279 −0.0487 0.1069 0.060*
H22B −0.0216 0.1220 0.1377 0.060*
H22C −0.0106 −0.0403 0.1741 0.060*
O7 0.44563 (9) −0.0862 (3) 0.11244 (8) 0.0405 (5)
H7 0.4192 (13) −0.020 (3) 0.0904 (12) 0.061*
C23 0.49869 (12) −0.0019 (4) 0.14902 (11) 0.0402 (7)
H23A 0.5115 0.0747 0.1266 0.060*
H23B 0.5320 −0.0785 0.1678 0.060*
H23C 0.4892 0.0564 0.1779 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01219 (14) 0.02092 (16) 0.01395 (13) −0.00189 (11) 0.00562 (10) −0.00251 (11)
Ni2 0.01350 (14) 0.02149 (17) 0.01487 (13) −0.00278 (11) 0.00690 (10) −0.00266 (11)
O1 0.0187 (8) 0.0319 (10) 0.0189 (7) −0.0028 (7) 0.0087 (6) −0.0014 (7)
O2 0.0197 (8) 0.0364 (10) 0.0207 (7) −0.0093 (7) 0.0099 (6) −0.0073 (7)
O3 0.0208 (8) 0.0414 (12) 0.0306 (9) −0.0084 (8) 0.0119 (7) −0.0045 (8)
O4 0.0189 (8) 0.0287 (10) 0.0233 (8) −0.0023 (7) 0.0111 (6) −0.0030 (7)
O5 0.0181 (8) 0.0356 (10) 0.0205 (8) −0.0074 (7) 0.0090 (6) −0.0064 (7)
O6 0.0176 (8) 0.0428 (12) 0.0338 (9) −0.0018 (8) 0.0108 (7) −0.0027 (9)
N1 0.0189 (9) 0.0256 (11) 0.0217 (9) −0.0010 (8) 0.0065 (7) −0.0024 (9)
N2 0.0200 (9) 0.0243 (11) 0.0199 (9) −0.0019 (8) 0.0074 (7) 0.0003 (8)
C1 0.0233 (11) 0.0175 (12) 0.0201 (10) 0.0039 (9) 0.0095 (9) 0.0018 (9)
C2 0.0242 (12) 0.0207 (13) 0.0268 (11) 0.0003 (10) 0.0119 (9) 0.0015 (10)
C3 0.0299 (13) 0.0256 (14) 0.0337 (13) −0.0013 (11) 0.0201 (10) 0.0042 (11)
C4 0.0387 (14) 0.0304 (15) 0.0239 (11) 0.0058 (11) 0.0192 (10) 0.0051 (11)
C5 0.0312 (13) 0.0290 (14) 0.0196 (11) 0.0044 (11) 0.0104 (9) 0.0011 (10)
C6 0.0232 (11) 0.0219 (13) 0.0214 (11) 0.0033 (9) 0.0108 (9) 0.0014 (9)
C7 0.0234 (11) 0.0237 (13) 0.0203 (10) 0.0024 (10) 0.0064 (9) −0.0014 (10)
C8 0.0186 (11) 0.0362 (16) 0.0238 (11) −0.0024 (10) 0.0046 (9) −0.0028 (11)
C9 0.0217 (11) 0.0296 (14) 0.0283 (12) −0.0066 (10) 0.0079 (9) −0.0047 (11)
C10 0.0181 (11) 0.0352 (15) 0.0255 (11) −0.0078 (10) 0.0096 (9) −0.0037 (11)
C11 0.0248 (13) 0.0405 (17) 0.0486 (15) −0.0074 (12) 0.0186 (11) −0.0023 (13)
C12 0.0243 (11) 0.0182 (12) 0.0221 (11) 0.0034 (9) 0.0126 (9) 0.0049 (9)
C13 0.0243 (12) 0.0268 (14) 0.0258 (11) 0.0012 (10) 0.0122 (9) 0.0047 (10)
C14 0.0276 (12) 0.0270 (14) 0.0379 (13) 0.0050 (11) 0.0202 (10) 0.0066 (12)
C15 0.0408 (15) 0.0255 (14) 0.0339 (13) 0.0048 (12) 0.0258 (11) 0.0008 (11)
C16 0.0393 (14) 0.0220 (13) 0.0263 (12) 0.0005 (11) 0.0193 (10) −0.0011 (10)
C17 0.0268 (12) 0.0186 (12) 0.0218 (10) 0.0008 (10) 0.0128 (9) 0.0019 (10)
C18 0.0277 (12) 0.0205 (13) 0.0185 (10) −0.0030 (10) 0.0087 (8) −0.0003 (9)
C19 0.0198 (11) 0.0324 (14) 0.0201 (10) −0.0034 (10) 0.0051 (8) −0.0005 (10)
C20 0.0190 (11) 0.0282 (14) 0.0247 (11) −0.0065 (10) 0.0076 (9) −0.0033 (10)
C21 0.0180 (11) 0.0310 (14) 0.0237 (11) −0.0059 (10) 0.0087 (8) −0.0043 (11)
C22 0.0203 (13) 0.0457 (18) 0.0537 (17) −0.0018 (12) 0.0132 (12) −0.0038 (15)
O7 0.0350 (11) 0.0377 (12) 0.0408 (11) 0.0060 (9) 0.0065 (8) 0.0008 (9)
C23 0.0272 (14) 0.0532 (19) 0.0359 (14) 0.0087 (13) 0.0081 (11) 0.0026 (14)

Geometric parameters (Å, º)

Ni1—O1 1.9107 (16) C9—H9A 0.9900
Ni1—O5 1.9208 (16) C9—H9B 0.9900
Ni1—O2 1.9224 (16) C10—H10A 0.9900
Ni1—N1 1.9314 (19) C10—H10B 0.9900
Ni2—O4 1.8936 (16) C11—H11A 0.9800
Ni2—O2 1.9197 (16) C11—H11B 0.9800
Ni2—O5 1.9208 (16) C11—H11C 0.9800
Ni2—N2 1.9366 (19) C12—C17 1.415 (3)
O1—C1 1.321 (2) C12—C13 1.434 (3)
O2—C10 1.422 (3) C13—C14 1.374 (3)
O3—C2 1.373 (3) C14—C15 1.404 (4)
O3—C11 1.434 (3) C14—H14A 0.9500
O4—C12 1.304 (3) C15—C16 1.368 (3)
O5—C21 1.412 (3) C15—H15A 0.9500
O6—C13 1.372 (3) C16—C17 1.411 (3)
O6—C22 1.430 (3) C16—H16A 0.9500
N1—C7 1.288 (3) C17—C18 1.445 (3)
N1—C8 1.476 (3) C18—H18A 0.9500
N2—C18 1.291 (3) C19—C20 1.524 (3)
N2—C19 1.471 (3) C19—H19A 0.9900
C1—C6 1.412 (3) C19—H19B 0.9900
C1—C2 1.425 (3) C20—C21 1.518 (3)
C2—C3 1.380 (3) C20—H20A 0.9900
C3—C4 1.402 (4) C20—H20B 0.9900
C3—H3A 0.9500 C21—H21A 0.9900
C4—C5 1.360 (4) C21—H21B 0.9900
C4—H4A 0.9500 C22—H22A 0.9800
C5—C6 1.419 (3) C22—H22B 0.9800
C5—H5A 0.9500 C22—H22C 0.9800
C6—C7 1.431 (3) O7—C23 1.420 (3)
C7—H7A 0.9500 O7—H7 0.855 (10)
C8—C9 1.513 (3) C23—H23A 0.9800
C8—H8A 0.9900 C23—H23B 0.9800
C8—H8B 0.9900 C23—H23C 0.9800
C9—C10 1.519 (3)
O1—Ni1—O5 94.29 (7) C9—C10—H10A 109.5
O1—Ni1—O2 166.63 (7) O2—C10—H10B 109.5
O5—Ni1—O2 76.22 (7) C9—C10—H10B 109.5
O1—Ni1—N1 95.36 (8) H10A—C10—H10B 108.1
O5—Ni1—N1 166.94 (8) O3—C11—H11A 109.5
O2—Ni1—N1 95.57 (8) O3—C11—H11B 109.5
O4—Ni2—O2 92.84 (7) H11A—C11—H11B 109.5
O4—Ni2—O5 168.20 (6) O3—C11—H11C 109.5
O2—Ni2—O5 76.29 (7) H11A—C11—H11C 109.5
O4—Ni2—N2 94.61 (8) H11B—C11—H11C 109.5
O2—Ni2—N2 170.39 (8) O4—C12—C17 124.8 (2)
O5—Ni2—N2 96.71 (7) O4—C12—C13 118.4 (2)
C1—O1—Ni1 126.27 (14) C17—C12—C13 116.8 (2)
C10—O2—Ni2 125.24 (14) O6—C13—C14 124.7 (2)
C10—O2—Ni1 130.61 (13) O6—C13—C12 114.2 (2)
Ni2—O2—Ni1 103.45 (8) C14—C13—C12 121.2 (2)
C2—O3—C11 116.59 (19) C13—C14—C15 120.9 (2)
C12—O4—Ni2 124.27 (15) C13—C14—H14A 119.5
C21—O5—Ni2 128.02 (13) C15—C14—H14A 119.5
C21—O5—Ni1 127.41 (13) C16—C15—C14 119.4 (2)
Ni2—O5—Ni1 103.47 (7) C16—C15—H15A 120.3
C13—O6—C22 116.4 (2) C14—C15—H15A 120.3
C7—N1—C8 116.96 (19) C15—C16—C17 121.0 (2)
C7—N1—Ni1 123.55 (16) C15—C16—H16A 119.5
C8—N1—Ni1 119.47 (15) C17—C16—H16A 119.5
C18—N2—C19 117.29 (19) C16—C17—C12 120.7 (2)
C18—N2—Ni2 123.11 (16) C16—C17—C18 117.3 (2)
C19—N2—Ni2 119.60 (14) C12—C17—C18 122.0 (2)
O1—C1—C6 123.7 (2) N2—C18—C17 126.5 (2)
O1—C1—C2 119.0 (2) N2—C18—H18A 116.8
C6—C1—C2 117.2 (2) C17—C18—H18A 116.8
O3—C2—C3 123.8 (2) N2—C19—C20 111.77 (18)
O3—C2—C1 114.80 (19) N2—C19—H19A 109.3
C3—C2—C1 121.4 (2) C20—C19—H19A 109.3
C2—C3—C4 120.3 (2) N2—C19—H19B 109.3
C2—C3—H3A 119.8 C20—C19—H19B 109.3
C4—C3—H3A 119.8 H19A—C19—H19B 107.9
C5—C4—C3 119.8 (2) C21—C20—C19 113.7 (2)
C5—C4—H4A 120.1 C21—C20—H20A 108.8
C3—C4—H4A 120.1 C19—C20—H20A 108.8
C4—C5—C6 121.1 (2) C21—C20—H20B 108.8
C4—C5—H5A 119.5 C19—C20—H20B 108.8
C6—C5—H5A 119.5 H20A—C20—H20B 107.7
C1—C6—C5 120.1 (2) O5—C21—C20 111.67 (18)
C1—C6—C7 123.7 (2) O5—C21—H21A 109.3
C5—C6—C7 116.2 (2) C20—C21—H21A 109.3
N1—C7—C6 127.3 (2) O5—C21—H21B 109.3
N1—C7—H7A 116.3 C20—C21—H21B 109.3
C6—C7—H7A 116.3 H21A—C21—H21B 107.9
N1—C8—C9 111.67 (19) O6—C22—H22A 109.5
N1—C8—H8A 109.3 O6—C22—H22B 109.5
C9—C8—H8A 109.3 H22A—C22—H22B 109.5
N1—C8—H8B 109.3 O6—C22—H22C 109.5
C9—C8—H8B 109.3 H22A—C22—H22C 109.5
H8A—C8—H8B 107.9 H22B—C22—H22C 109.5
C8—C9—C10 112.8 (2) C23—O7—H7 110 (2)
C8—C9—H9A 109.0 O7—C23—H23A 109.5
C10—C9—H9A 109.0 O7—C23—H23B 109.5
C8—C9—H9B 109.0 H23A—C23—H23B 109.5
C10—C9—H9B 109.0 O7—C23—H23C 109.5
H9A—C9—H9B 107.8 H23A—C23—H23C 109.5
O2—C10—C9 110.77 (18) H23B—C23—H23C 109.5
O2—C10—H10A 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7···O1 0.86 (1) 2.05 (1) 2.893 (3) 170 (3)
O7—H7···O3 0.86 (1) 2.64 (3) 3.178 (3) 122 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2096).

References

  1. Costes, J. P., Dahan, F., Fernandez Fernandez, M. B., Fernandez Garcia, M. I., Garcia Deibe, A. M. & Sanmartin, J. (1998). Inorg. Chim. Acta, 274, 73–81.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Long, J. L., Chamoreau, M. & Marvaud, V. (2010). Dalton Trans. 39, 2188–2190. [DOI] [PubMed]
  4. Mondal, K. C., Kostakis, G. E., Lan, Y. H., Wernsdorfer, W., Anson, C. E. & Powell, A. K. (2011). Inorg. Chem. 50, 11604–11611. [DOI] [PubMed]
  5. Rigaku/MSC (2002). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sarwar, M., Madalan, A. M., Lloret, F., Julve, M. & Andruh, M. (2011). Polyhedron, 30, 2414–2420.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017224/qm2096sup1.cif

e-69-0m425-sup1.cif (30.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017224/qm2096Isup2.hkl

e-69-0m425-Isup2.hkl (257.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES