Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):o1031–o1032. doi: 10.1107/S1600536813014943

8-Chloro­methyl-5-(2,5-dioxooxolan-3-yl)-3,3a,4,5-tetra­hydro-1H-naphtho­[1,2-c]furan-1,3-dione

Y Z Guo a, Y Z Song b, J G Liu a,*, S Y Yang a
PMCID: PMC3772467  PMID: 24046610

Abstract

The title compound, C17H13ClO6, is an asymmetric alicyclic dianhydride containing a chloro­methyl-substituted tetra­hydro­naphthalene moiety. The cyclo­hexene ring in the tetra­hydro­naphthalene moiety exhibits an envelope conformation with the tertiary C atom as the flap The dihedral angle between the two anhydride rings is 79.96 (6)°, while those between the benzene ring and the non-fused and fused anhydride rings are 71.03 (5) and 42.57 (7)°, respectively. In the crystal, mol­ecules are connected by weak C—H⋯O inter­actions, forming a three-dimensional supramolecular structure.

Related literature  

For background to polyimides, see: Li et al. (2005); Liaw et al. (2012); Zhang et al. (2003); Zhong et al. (2004). For background to and applications of tetra­hydro­naphthalene-containing alicyclic dianhydrides, see: Guo, Shen et al. (2013). For the structure of a related compound, see: Guo, Liu & Yang (2013) and for its synthesis, see: Hall et al. (1982); Guo et al. (2012). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1031-scheme1.jpg

Experimental  

Crystal data  

  • C17H13ClO6

  • M r = 348.72

  • Triclinic, Inline graphic

  • a = 6.8988 (15) Å

  • b = 9.140 (2) Å

  • c = 11.950 (3) Å

  • α = 80.937 (9)°

  • β = 75.365 (8)°

  • γ = 79.614 (8)°

  • V = 712.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.41 × 0.21 × 0.15 mm

Data collection  

  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.702, T max = 1.000

  • 9192 measured reflections

  • 3238 independent reflections

  • 3034 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.108

  • S = 1.10

  • 3238 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014943/zp2004sup1.cif

e-69-o1031-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014943/zp2004Isup2.hkl

e-69-o1031-Isup2.hkl (158.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014943/zp2004Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O4i 0.99 2.51 3.420 (2) 153
C5—H5⋯O1ii 1.00 2.59 3.386 (2) 136
C7—H7⋯O4i 1.00 2.51 3.468 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China for financial support (grant No. 51173188).

supplementary crystallographic information

Comment

Polyimide (PI) is an important class of high performance polymers in the current industry. Functional PI materials have been widely used in microelectronic, optoelectronic and advanced display areas (Liaw et al., 2012). Chloromethyl is an important active species for functionalization of PI materials (Li et al., 2005). For instance, PIs which are highly sensitive to ultraviolet lights of high-pressure mercury lamps have been successfully developed via the reaction of chloromethyl substituted in the PI molecules with photosensitive substances, such as cinnamic acid (Zhang et al., 2003). In addition, chloromethyl-containing PIs exhibited good sensitivity to linearly polarized ultraviolet light, which making it possible using the PIs for the photoalignment fabrication of liquid crystal molecules in advanced liquid crystal display devices (Zhong et al., 2004). In the current work, we reported a novel chloromethyl-containing alicyclic dianhydride monomer. The molecular structure of the title compound is shown in Fig. 1. The compound has an asymmetrical structure and the dihedral angle between the two anhydride rings is 79.96 (6)° while the dihedral angles between the benzene ring and the anhydride ring 1(C1—C2—C3—C4—O2) and anhydride ring 2 (C7—C8—C9—C10—O5) are 71.03 (5)° and 42.57 (7)°, respectively. The six-membered cyclohexene ring in the tetra-hydronaphthalene residue exhibits an envelope conformation with puckering parameters of Q = 0.4805 (17) Å, θ=57.46 (19)° and φ =58.9 (2)°. =122.8 (2)° and φ=300.7 (2)° (Cremer & Pople, 1975). There is an intramolecular C—H···Cl hydrogen bond in the molecule, while in the crystal, molecules are connected by week C—H···O intermolecular interactions, as shown in Table 1.

Experimental

Into a 500 ml three-necked flask equipped with a mechanical stirrer, a nitric oxide inlet, and a condenser, 43.75 g(0.446 mol) of maleic anhydride, 104.09 g(0.682 mol) of 4-chloromethylstyrene, 0.1138 g(0.5 mmol) of 2,5-di-tert-butyl hydroquinone were added. The reaction mixture was heated to 120°C and maintained for 6 h under nitric oxide. The produced red-brown nitrogen oxide gas was trapped by passing through an aqueous solution of 20 wt% sodium hydroxide. White needle crystals were formed. After the reaction was completed, 60 ml of acetonitrile was added and the solution was refluxed for about 0.5 h. Then 60 ml of toluene was added and the reactino mixture was cooled to room temperature. The produced white needle crystals was collected by filtration and the solid was washed with toluene and petroleum ether in succession. After being dried in vacuum, the pure MCTDA was obtained as white crystals. Yield: 59.49 g(76.5%). Elemental analysis: calculated for C17H13ClO6:C,58.55; H:3.76%. Found: C:58.71; H:3.85%. EI—MS, m/z:142(M+-176, 100%). Colourless single crystals were grown by slow evaporation of an acetonitrile solution over a period of several days.

Refinement

All H atoms were positioned geometrically (C-H=0.95-1.00 Å) and refined using a riding model with the Uiso(H)=1.2 UeqC for both of the aromatic ring and aliphatic chain.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing diaplacement ellipsoids at the 30% probability level.

Crystal data

C17H13ClO6 Z = 2
Mr = 348.72 F(000) = 360
Triclinic, P1 Dx = 1.626 Mg m3
Hall symbol: -p 1 Melting point: 502 K
a = 6.8988 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.140 (2) Å Cell parameters from 2542 reflections
c = 11.950 (3) Å θ = 2.3–27.5°
α = 80.937 (9)° µ = 0.30 mm1
β = 75.365 (8)° T = 173 K
γ = 79.614 (8)° Block, colourless
V = 712.1 (3) Å3 0.41 × 0.21 × 0.15 mm

Data collection

Rigaku Saturn724+ CCD diffractometer 3238 independent reflections
Radiation source: sealed tube 3034 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
ω scans at fixed χ = 45° θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) h = −8→8
Tmin = 0.702, Tmax = 1.000 k = −11→11
9192 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3488P] where P = (Fo2 + 2Fc2)/3
3238 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.05131 (7) −0.07996 (5) 0.86631 (4) 0.03800 (15)
O1 0.26974 (19) 0.57365 (14) 0.98000 (10) 0.0314 (3)
O2 0.50528 (18) 0.64807 (13) 0.82479 (10) 0.0277 (3)
O3 0.70203 (18) 0.68985 (14) 0.64654 (11) 0.0303 (3)
O4 −0.16049 (18) 0.33284 (13) 0.54844 (11) 0.0301 (3)
O5 0.05290 (17) 0.11884 (12) 0.56476 (10) 0.0258 (3)
O6 0.31175 (19) −0.05753 (13) 0.59407 (11) 0.0307 (3)
C1 0.3305 (2) 0.58452 (17) 0.87724 (14) 0.0236 (3)
C2 0.2441 (2) 0.53951 (17) 0.78490 (14) 0.0217 (3)
H2 0.1206 0.6131 0.7772 0.026*
C3 0.4071 (2) 0.56388 (18) 0.67298 (14) 0.0241 (3)
H3A 0.4742 0.4670 0.6448 0.029*
H3B 0.3475 0.6268 0.6112 0.029*
C4 0.5553 (2) 0.64167 (17) 0.70584 (14) 0.0229 (3)
C5 0.1782 (2) 0.38204 (17) 0.82204 (13) 0.0198 (3)
H5 0.1048 0.3789 0.9058 0.024*
C6 0.0298 (2) 0.35351 (18) 0.75498 (14) 0.0228 (3)
H6A −0.0792 0.4403 0.7555 0.027*
H6B −0.0331 0.2643 0.7946 0.027*
C7 0.1347 (2) 0.32835 (17) 0.62825 (14) 0.0209 (3)
H7 0.1755 0.4237 0.5823 0.025*
C8 −0.0087 (2) 0.26947 (18) 0.57545 (14) 0.0235 (3)
C9 0.2381 (2) 0.07047 (18) 0.59505 (13) 0.0226 (3)
C10 0.3176 (2) 0.20368 (16) 0.61997 (13) 0.0194 (3)
H10 0.4219 0.2337 0.5491 0.023*
C11 0.4192 (2) 0.17137 (16) 0.72211 (13) 0.0183 (3)
C12 0.3571 (2) 0.25765 (16) 0.81480 (13) 0.0190 (3)
C13 0.4641 (2) 0.22721 (17) 0.90297 (13) 0.0222 (3)
H13 0.4250 0.2865 0.9658 0.027*
C14 0.6257 (2) 0.11244 (17) 0.90047 (14) 0.0237 (3)
H14 0.6960 0.0934 0.9614 0.028*
C15 0.6854 (2) 0.02504 (17) 0.80893 (14) 0.0213 (3)
C16 0.5840 (2) 0.05678 (17) 0.71949 (13) 0.0206 (3)
H16 0.6274 −0.0003 0.6554 0.025*
C17 0.8514 (2) −0.10779 (18) 0.80455 (15) 0.0259 (3)
H17A 0.9082 −0.1267 0.7225 0.031*
H17B 0.7930 −0.1975 0.8474 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0321 (2) 0.0391 (3) 0.0504 (3) 0.00849 (18) −0.0251 (2) −0.0182 (2)
O1 0.0324 (6) 0.0352 (7) 0.0283 (6) −0.0042 (5) −0.0050 (5) −0.0130 (5)
O2 0.0287 (6) 0.0309 (6) 0.0285 (6) −0.0087 (5) −0.0100 (5) −0.0079 (5)
O3 0.0303 (6) 0.0306 (6) 0.0324 (7) −0.0097 (5) −0.0082 (5) −0.0032 (5)
O4 0.0269 (6) 0.0288 (6) 0.0394 (7) −0.0020 (5) −0.0181 (5) −0.0038 (5)
O5 0.0256 (6) 0.0227 (6) 0.0339 (6) −0.0028 (4) −0.0137 (5) −0.0070 (5)
O6 0.0334 (6) 0.0226 (6) 0.0396 (7) 0.0017 (5) −0.0136 (5) −0.0118 (5)
C1 0.0232 (7) 0.0202 (7) 0.0292 (8) 0.0000 (6) −0.0082 (6) −0.0084 (6)
C2 0.0205 (7) 0.0191 (7) 0.0277 (8) 0.0003 (6) −0.0092 (6) −0.0072 (6)
C3 0.0286 (8) 0.0213 (7) 0.0256 (8) −0.0070 (6) −0.0101 (6) −0.0025 (6)
C4 0.0249 (8) 0.0184 (7) 0.0271 (8) −0.0007 (6) −0.0105 (6) −0.0031 (6)
C5 0.0172 (7) 0.0202 (7) 0.0224 (7) −0.0011 (5) −0.0041 (6) −0.0062 (6)
C6 0.0180 (7) 0.0226 (7) 0.0293 (8) −0.0020 (6) −0.0062 (6) −0.0074 (6)
C7 0.0199 (7) 0.0183 (7) 0.0269 (8) −0.0023 (5) −0.0096 (6) −0.0032 (6)
C8 0.0241 (8) 0.0225 (7) 0.0257 (8) −0.0041 (6) −0.0088 (6) −0.0028 (6)
C9 0.0237 (7) 0.0238 (8) 0.0220 (7) −0.0023 (6) −0.0075 (6) −0.0055 (6)
C10 0.0190 (7) 0.0198 (7) 0.0204 (7) −0.0026 (5) −0.0059 (5) −0.0035 (6)
C11 0.0182 (7) 0.0174 (7) 0.0202 (7) −0.0046 (5) −0.0057 (5) −0.0009 (5)
C12 0.0184 (7) 0.0177 (7) 0.0214 (7) −0.0036 (5) −0.0049 (5) −0.0018 (5)
C13 0.0266 (8) 0.0203 (7) 0.0207 (7) −0.0045 (6) −0.0059 (6) −0.0040 (6)
C14 0.0261 (8) 0.0223 (7) 0.0253 (8) −0.0038 (6) −0.0116 (6) −0.0010 (6)
C15 0.0202 (7) 0.0183 (7) 0.0263 (8) −0.0027 (5) −0.0076 (6) −0.0015 (6)
C16 0.0209 (7) 0.0191 (7) 0.0229 (7) −0.0028 (6) −0.0054 (6) −0.0054 (6)
C17 0.0254 (8) 0.0209 (7) 0.0345 (9) −0.0002 (6) −0.0137 (7) −0.0050 (6)

Geometric parameters (Å, º)

Cl1—C17 1.7920 (16) C6—H6A 0.9900
O1—C1 1.187 (2) C6—H6B 0.9900
O2—C4 1.384 (2) C7—C8 1.510 (2)
O2—C1 1.393 (2) C7—C10 1.535 (2)
O3—C4 1.192 (2) C7—H7 1.0000
O4—C8 1.1957 (19) C9—C10 1.520 (2)
O5—C8 1.3818 (19) C10—C11 1.520 (2)
O5—C9 1.3923 (19) C10—H10 1.0000
O6—C9 1.189 (2) C11—C12 1.395 (2)
C1—C2 1.518 (2) C11—C16 1.398 (2)
C2—C3 1.529 (2) C12—C13 1.399 (2)
C2—C5 1.552 (2) C13—C14 1.384 (2)
C2—H2 1.0000 C13—H13 0.9500
C3—C4 1.503 (2) C14—C15 1.390 (2)
C3—H3A 0.9900 C14—H14 0.9500
C3—H3B 0.9900 C15—C16 1.386 (2)
C5—C12 1.515 (2) C15—C17 1.509 (2)
C5—C6 1.528 (2) C16—H16 0.9500
C5—H5 1.0000 C17—H17A 0.9900
C6—C7 1.538 (2) C17—H17B 0.9900
C4—O2—C1 110.80 (12) C6—C7—H7 110.6
C8—O5—C9 110.77 (12) O4—C8—O5 120.53 (14)
O1—C1—O2 120.33 (14) O4—C8—C7 129.30 (15)
O1—C1—C2 129.76 (15) O5—C8—C7 110.11 (13)
O2—C1—C2 109.90 (13) O6—C9—O5 120.05 (15)
C1—C2—C3 103.52 (12) O6—C9—C10 130.51 (15)
C1—C2—C5 110.96 (13) O5—C9—C10 109.38 (13)
C3—C2—C5 118.62 (12) C9—C10—C11 114.41 (12)
C1—C2—H2 107.8 C9—C10—C7 103.68 (12)
C3—C2—H2 107.8 C11—C10—C7 116.64 (12)
C5—C2—H2 107.8 C9—C10—H10 107.2
C4—C3—C2 105.08 (13) C11—C10—H10 107.2
C4—C3—H3A 110.7 C7—C10—H10 107.2
C2—C3—H3A 110.7 C12—C11—C16 119.82 (13)
C4—C3—H3B 110.7 C12—C11—C10 121.42 (13)
C2—C3—H3B 110.7 C16—C11—C10 118.70 (13)
H3A—C3—H3B 108.8 C11—C12—C13 118.55 (14)
O3—C4—O2 120.22 (14) C11—C12—C5 121.75 (13)
O3—C4—C3 129.78 (15) C13—C12—C5 119.70 (13)
O2—C4—C3 109.95 (13) C14—C13—C12 121.30 (14)
C12—C5—C6 110.91 (12) C14—C13—H13 119.3
C12—C5—C2 112.48 (12) C12—C13—H13 119.3
C6—C5—C2 112.64 (13) C13—C14—C15 120.07 (14)
C12—C5—H5 106.8 C13—C14—H14 120.0
C6—C5—H5 106.8 C15—C14—H14 120.0
C2—C5—H5 106.8 C16—C15—C14 119.13 (14)
C5—C6—C7 111.94 (12) C16—C15—C17 117.99 (14)
C5—C6—H6A 109.2 C14—C15—C17 122.83 (14)
C7—C6—H6A 109.2 C15—C16—C11 121.09 (14)
C5—C6—H6B 109.2 C15—C16—H16 119.5
C7—C6—H6B 109.2 C11—C16—H16 119.5
H6A—C6—H6B 107.9 C15—C17—Cl1 112.50 (11)
C8—C7—C10 103.64 (12) C15—C17—H17A 109.1
C8—C7—C6 108.82 (13) Cl1—C17—H17A 109.1
C10—C7—C6 112.36 (12) C15—C17—H17B 109.1
C8—C7—H7 110.6 Cl1—C17—H17B 109.1
C10—C7—H7 110.6 H17A—C17—H17B 107.8
C4—O2—C1—O1 176.48 (15) O6—C9—C10—C7 −170.26 (17)
C4—O2—C1—C2 −4.14 (16) O5—C9—C10—C7 12.71 (16)
O1—C1—C2—C3 −172.78 (17) C8—C7—C10—C9 −15.08 (15)
O2—C1—C2—C3 7.90 (16) C6—C7—C10—C9 102.23 (14)
O1—C1—C2—C5 −44.5 (2) C8—C7—C10—C11 −141.81 (13)
O2—C1—C2—C5 136.19 (13) C6—C7—C10—C11 −24.50 (18)
C1—C2—C3—C4 −8.38 (15) C9—C10—C11—C12 −125.35 (15)
C5—C2—C3—C4 −131.77 (13) C7—C10—C11—C12 −4.1 (2)
C1—O2—C4—O3 −179.38 (14) C9—C10—C11—C16 57.57 (18)
C1—O2—C4—C3 −1.65 (17) C7—C10—C11—C16 178.79 (13)
C2—C3—C4—O3 −175.99 (16) C16—C11—C12—C13 0.5 (2)
C2—C3—C4—O2 6.56 (17) C10—C11—C12—C13 −176.56 (13)
C1—C2—C5—C12 −72.89 (16) C16—C11—C12—C5 −179.44 (13)
C3—C2—C5—C12 46.72 (18) C10—C11—C12—C5 3.5 (2)
C1—C2—C5—C6 160.87 (12) C6—C5—C12—C11 25.70 (19)
C3—C2—C5—C6 −79.51 (16) C2—C5—C12—C11 −101.46 (16)
C12—C5—C6—C7 −54.14 (17) C6—C5—C12—C13 −154.22 (14)
C2—C5—C6—C7 72.94 (16) C2—C5—C12—C13 78.62 (17)
C5—C6—C7—C8 168.26 (12) C11—C12—C13—C14 −1.2 (2)
C5—C6—C7—C10 54.08 (17) C5—C12—C13—C14 178.68 (14)
C9—O5—C8—O4 176.79 (15) C12—C13—C14—C15 0.3 (2)
C9—O5—C8—C7 −5.78 (17) C13—C14—C15—C16 1.5 (2)
C10—C7—C8—O4 −169.45 (17) C13—C14—C15—C17 −176.01 (14)
C6—C7—C8—O4 70.8 (2) C14—C15—C16—C11 −2.3 (2)
C10—C7—C8—O5 13.41 (16) C17—C15—C16—C11 175.37 (14)
C6—C7—C8—O5 −106.35 (14) C12—C11—C16—C15 1.3 (2)
C8—O5—C9—O6 177.93 (15) C10—C11—C16—C15 178.39 (14)
C8—O5—C9—C10 −4.67 (17) C16—C15—C17—Cl1 147.27 (13)
O6—C9—C10—C11 −42.1 (2) C14—C15—C17—Cl1 −35.2 (2)
O5—C9—C10—C11 140.82 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O4i 0.99 2.51 3.420 (2) 153
C5—H5···O1ii 1.00 2.59 3.386 (2) 136
C7—H7···O4i 1.00 2.51 3.468 (2) 160
C14—H14···Cl1 0.95 2.75 3.1045 (17) 103

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZP2004).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Guo, Y. Z., Liu, J. G. & Yang, S. Y. (2013). Acta Cryst. E69, o226. [DOI] [PMC free article] [PubMed]
  4. Guo, Y. Z., Shen, D. X., Ni, H. J., Liu, J. G. & Yang, S. Y. (2013). Prog. Org. Coat. 76, 768–777.
  5. Guo, Y. Z., Song, H. W., Zhai, L., Liu, J. G. & Yang, S. Y. (2012). Polym. J. 44, 718–723.
  6. Hall, H. K., Nogues, P., Rhoades, J. W., Sentman, R. C. & Detar, M. (1982). J. Org. Chem. 47, 1451–1455.
  7. Li, X. D., Zhong, Z. X., Han, S. H., Lee, S. H. & Lee, M. H. (2005). Polym. Int. 54, 406–411.
  8. Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y. & Ha, C. S. (2012). Prog. Polym. Sci. 37, 907–974.
  9. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zhang, A. Q., Li, X. D., Nah, C. W., Hwang, K. J. & Lee, M. H. (2003). J. Polym. Sci. Part A Polym. Chem. 41, 22–29.
  12. Zhong, Z. X., Li, X. D., Lee, S. H. & Lee, M. H. (2004). Mol. Cryst. Liq. Cryst. 425, 145–152.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813014943/zp2004sup1.cif

e-69-o1031-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014943/zp2004Isup2.hkl

e-69-o1031-Isup2.hkl (158.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014943/zp2004Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES