Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):o1048. doi: 10.1107/S160053681301550X

5,15-Bis(4-pentyl­oxyphen­yl)porphyrin

Mathias O Senge a,*
PMCID: PMC3772480  PMID: 24046623

Abstract

In the title compound, C42H42N4O2, the complete molecule is generated by a crystallographic inversion centre. The porphyrin system exhibits a near planar macrocycle conformation with an average deviation from the least-squares plane of the 24 macrocycle atoms of 0.037 (5) Å. The phenyl ipso C atoms are positioned above and below the porphyrin plane by 0.35 (1) Å and the macrocycle shows evidence of in-plane rectangular elongation with N⋯N separations of 3.032 (5) and 2.803 (5) Å. Two intramolecular N—H⋯N hydrogen bonds occur.

Related literature  

For the conformation of porphyrins, see: Scheidt & Lee (1987); Senge et al. (1997); Senge (2006). For the synthesis of such compounds, see: Wiehe et al. (2005).graphic file with name e-69-o1048-scheme1.jpg

Experimental  

Crystal data  

  • C42H42N4O2

  • M r = 634.80

  • Triclinic, Inline graphic

  • a = 9.5222 (6) Å

  • b = 9.5799 (6) Å

  • c = 10.2195 (6) Å

  • α = 67.777 (1)°

  • β = 88.063 (1)°

  • γ = 72.464 (1)°

  • V = 819.49 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.30 × 0.10 × 0.08 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.97, T max = 0.99

  • 9093 measured reflections

  • 3606 independent reflections

  • 2489 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.109

  • S = 1.04

  • 3606 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, 2R. DOI: 10.1107/S160053681301550X/zl2552sup1.cif

e-69-o1048-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301550X/zl2552Isup2.hkl

e-69-o1048-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N24 0.88 2.50 3.033 (2) 119
N21—H21⋯N24i 0.88 2.22 2.804 (2) 123

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

supplementary crystallographic information

Comment

Many porphyrin structures with four meso substituents have been reported (Scheidt & Lee, 1987). The available number of structures for systems with only two meso residues is much smaller. In the context of an ongoing program on the conformational flexibilty of porphyrins (Senge, 2006) we are interested in a comparative analysis of 5,10-A2– and 5,15-A2-disubstituted porphyrins. The title compound is an example for the latter and exhibits a planar macrocycle with an average deviation from the least-squares-plane of the 24 macrocycle atoms of Δ24 = 0.037 (5) Å. The phenyl ipso carbon atoms are positioned above and below the porphyrin plane by 0.35 Å and the macrocycle shows evidence for in-plane distortion with N···N separations of 3.032 (5) and 2.803 (5) Å. This is similar to the situation found in 2,3,5,7,8,12,13,15, 17,18- decasubstituted porphyrins (Senge et al., 1997) where peri interaction between the meso and beta substituents occur. The molecules pack in parallel layers with the alkyl chains separating the macrocycles and only minimal π-aggregation.

Experimental

The compound was prepared as described by Wiehe et al. (2005) and crystallized from CH2Cl2/CH3OH.

Refinement

All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined with a standard riding model (C—H distance 0.96 - 0.99 Å, Uiso = 1.2–1.5 times of parent atom). Pyrrole hydrogen atoms were located in difference maps and refined with isotropic thermal parameters.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level; hydrogen atoms have been omitted for clarity.

Crystal data

C42H42N4O2 Z = 1
Mr = 634.80 F(000) = 338
Triclinic, P1 Dx = 1.286 Mg m3Dm = n/d Mg m3Dm measured by not measured
Hall symbol: -P 1 Melting point: n/d K
a = 9.5222 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5799 (6) Å Cell parameters from 1771 reflections
c = 10.2195 (6) Å θ = 4.5–60.7°
α = 67.777 (1)° µ = 0.08 mm1
β = 88.063 (1)° T = 90 K
γ = 72.464 (1)° Parallelpiped, red
V = 819.49 (9) Å3 0.30 × 0.10 × 0.08 mm

Data collection

Bruker SMART APEXII diffractometer 3606 independent reflections
Radiation source: fine-focus sealed tube 2489 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 8.3 pixels mm-1 θmax = 27.1°, θmin = 2.2°
ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→12
Tmin = 0.97, Tmax = 0.99 l = −13→13
9093 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1316P] where P = (Fo2 + 2Fc2)/3
3606 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N21 0.64309 (14) −0.19503 (16) 0.46008 (14) 0.0171 (3)
H21 0.5815 −0.1069 0.4627 0.047 (6)*
N24 0.36841 (13) −0.12143 (15) 0.61217 (14) 0.0160 (3)
C1 0.62390 (16) −0.34160 (19) 0.52069 (17) 0.0179 (4)
C2 0.74472 (17) −0.4492 (2) 0.48647 (18) 0.0190 (4)
H2A 0.7600 −0.5592 0.5123 0.023*
C3 0.83431 (17) −0.36651 (19) 0.41037 (17) 0.0185 (4)
H3A 0.9229 −0.4090 0.3740 0.022*
C4 0.77200 (16) −0.20511 (19) 0.39479 (17) 0.0169 (4)
C5 0.83034 (16) −0.07952 (19) 0.33369 (17) 0.0169 (4)
C16 0.24129 (16) −0.07563 (19) 0.67302 (16) 0.0164 (3)
C17 0.18961 (17) −0.2107 (2) 0.74985 (18) 0.0195 (4)
H17A 0.1041 −0.2097 0.8006 0.023*
C18 0.28721 (17) −0.3376 (2) 0.73457 (18) 0.0198 (4)
H18A 0.2843 −0.4437 0.7732 0.024*
C19 0.39727 (16) −0.28065 (19) 0.64781 (17) 0.0172 (4)
C20 0.51314 (16) −0.37959 (19) 0.60556 (17) 0.0185 (4)
H20A 0.5167 −0.4877 0.6396 0.022*
C51 0.98127 (17) −0.11283 (19) 0.28262 (17) 0.0177 (4)
C52 1.01657 (17) −0.1671 (2) 0.17315 (18) 0.0206 (4)
H52A 0.9421 −0.1859 0.1286 0.025*
C53 1.15769 (17) −0.1945 (2) 0.12745 (18) 0.0207 (4)
H53A 1.1792 −0.2316 0.0527 0.025*
C54 1.26742 (16) −0.16720 (19) 0.19238 (18) 0.0188 (4)
C55 1.23542 (17) −0.11454 (19) 0.30202 (17) 0.0192 (4)
H55A 1.3103 −0.0965 0.3467 0.023*
C56 1.09475 (17) −0.08822 (19) 0.34664 (18) 0.0192 (4)
H56A 1.0744 −0.0526 0.4224 0.023*
O1 1.41004 (11) −0.18754 (14) 0.15628 (12) 0.0226 (3)
C57 1.45008 (17) −0.2298 (2) 0.03660 (18) 0.0227 (4)
H57A 1.3832 −0.1524 −0.0488 0.027*
H57B 1.4430 −0.3366 0.0554 0.027*
C58 1.60744 (17) −0.2284 (2) 0.01421 (18) 0.0211 (4)
H58A 1.6702 −0.2943 0.1048 0.025*
H58B 1.6106 −0.1185 −0.0147 0.025*
C59 1.66924 (17) −0.2919 (2) −0.09922 (19) 0.0249 (4)
H59A 1.6492 −0.3934 −0.0788 0.030*
H59B 1.6167 −0.2157 −0.1927 0.030*
C510 1.83383 (17) −0.3191 (2) −0.10777 (18) 0.0217 (4)
H51A 1.8868 −0.3995 −0.0159 0.026*
H51B 1.8546 −0.2190 −0.1236 0.026*
C511 1.89275 (18) −0.3744 (2) −0.22522 (19) 0.0277 (4)
H51C 2.0009 −0.4029 −0.2182 0.042*
H51D 1.8518 −0.2889 −0.3175 0.042*
H51E 1.8637 −0.4673 −0.2159 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N21 0.0139 (7) 0.0134 (7) 0.0229 (8) −0.0023 (5) 0.0014 (5) −0.0075 (6)
N24 0.0136 (6) 0.0145 (7) 0.0195 (7) −0.0030 (5) −0.0003 (5) −0.0071 (6)
C1 0.0159 (8) 0.0165 (8) 0.0220 (9) −0.0040 (6) −0.0007 (6) −0.0088 (7)
C2 0.0184 (8) 0.0141 (8) 0.0241 (9) −0.0023 (6) 0.0006 (7) −0.0090 (7)
C3 0.0148 (8) 0.0197 (9) 0.0206 (9) −0.0017 (6) 0.0021 (6) −0.0103 (7)
C4 0.0119 (7) 0.0192 (9) 0.0184 (9) −0.0012 (6) 0.0004 (6) −0.0087 (7)
C5 0.0151 (8) 0.0190 (9) 0.0171 (8) −0.0047 (6) 0.0008 (6) −0.0078 (7)
C16 0.0156 (8) 0.0186 (9) 0.0146 (8) −0.0046 (6) 0.0001 (6) −0.0065 (7)
C17 0.0179 (8) 0.0206 (9) 0.0199 (9) −0.0071 (7) 0.0040 (6) −0.0071 (7)
C18 0.0193 (8) 0.0156 (9) 0.0237 (9) −0.0066 (7) 0.0022 (7) −0.0059 (7)
C19 0.0153 (8) 0.0159 (8) 0.0201 (9) −0.0046 (6) −0.0004 (6) −0.0066 (7)
C20 0.0180 (8) 0.0136 (8) 0.0236 (9) −0.0054 (6) −0.0001 (6) −0.0063 (7)
C51 0.0171 (8) 0.0144 (8) 0.0191 (9) −0.0031 (6) 0.0028 (6) −0.0052 (7)
C52 0.0183 (8) 0.0214 (9) 0.0221 (9) −0.0066 (7) 0.0012 (7) −0.0080 (8)
C53 0.0232 (9) 0.0212 (9) 0.0189 (9) −0.0060 (7) 0.0045 (7) −0.0100 (7)
C54 0.0146 (8) 0.0146 (8) 0.0222 (9) −0.0026 (6) 0.0047 (6) −0.0036 (7)
C55 0.0193 (8) 0.0165 (9) 0.0204 (9) −0.0057 (7) −0.0015 (7) −0.0053 (7)
C56 0.0197 (8) 0.0182 (9) 0.0184 (9) −0.0034 (7) 0.0021 (6) −0.0078 (7)
O1 0.0168 (6) 0.0286 (7) 0.0251 (7) −0.0071 (5) 0.0065 (5) −0.0135 (6)
C57 0.0202 (8) 0.0268 (10) 0.0229 (9) −0.0062 (7) 0.0069 (7) −0.0127 (8)
C58 0.0180 (8) 0.0183 (9) 0.0233 (9) −0.0047 (7) 0.0060 (7) −0.0050 (7)
C59 0.0204 (9) 0.0312 (11) 0.0260 (10) −0.0096 (8) 0.0071 (7) −0.0135 (8)
C510 0.0185 (8) 0.0216 (9) 0.0237 (9) −0.0046 (7) 0.0049 (7) −0.0088 (8)
C511 0.0209 (9) 0.0360 (11) 0.0324 (11) −0.0105 (8) 0.0071 (8) −0.0190 (9)

Geometric parameters (Å, º)

N21—C1 1.370 (2) C52—H52A 0.9500
N21—C4 1.3722 (19) C53—C54 1.394 (2)
N21—H21 0.8800 C53—H53A 0.9500
N24—C19 1.367 (2) C54—O1 1.3710 (18)
N24—C16 1.3711 (19) C54—C55 1.384 (2)
C1—C20 1.388 (2) C55—C56 1.381 (2)
C1—C2 1.428 (2) C55—H55A 0.9500
C2—C3 1.362 (2) C56—H56A 0.9500
C2—H2A 0.9500 O1—C57 1.4335 (19)
C3—C4 1.427 (2) C57—C58 1.511 (2)
C3—H3A 0.9500 C57—H57A 0.9900
C4—C5 1.399 (2) C57—H57B 0.9900
C5—C16i 1.412 (2) C58—C59 1.527 (2)
C5—C51 1.496 (2) C58—H58A 0.9900
C16—C5i 1.412 (2) C58—H58B 0.9900
C16—C17 1.457 (2) C59—C510 1.515 (2)
C17—C18 1.348 (2) C59—H59A 0.9900
C17—H17A 0.9500 C59—H59B 0.9900
C18—C19 1.448 (2) C510—C511 1.514 (2)
C18—H18A 0.9500 C510—H51A 0.9900
C19—C20 1.396 (2) C510—H51B 0.9900
C20—H20A 0.9500 C511—H51C 0.9800
C51—C52 1.394 (2) C511—H51D 0.9800
C51—C56 1.403 (2) C511—H51E 0.9800
C52—C53 1.389 (2)
C1—N21—C4 110.37 (13) C54—C53—H53A 120.3
C1—N21—H21 124.8 O1—C54—C55 114.91 (14)
C4—N21—H21 124.8 O1—C54—C53 125.17 (15)
C19—N24—C16 105.16 (13) C55—C54—C53 119.92 (14)
N21—C1—C20 126.59 (15) C56—C55—C54 120.09 (15)
N21—C1—C2 106.65 (13) C56—C55—H55A 120.0
C20—C1—C2 126.68 (15) C54—C55—H55A 120.0
C3—C2—C1 108.13 (15) C55—C56—C51 121.49 (16)
C3—C2—H2A 125.9 C55—C56—H56A 119.3
C1—C2—H2A 125.9 C51—C56—H56A 119.3
C2—C3—C4 108.17 (14) C54—O1—C57 118.76 (12)
C2—C3—H3A 125.9 O1—C57—C58 106.88 (13)
C4—C3—H3A 125.9 O1—C57—H57A 110.3
N21—C4—C5 124.67 (14) C58—C57—H57A 110.3
N21—C4—C3 106.62 (14) O1—C57—H57B 110.3
C5—C4—C3 128.61 (14) C58—C57—H57B 110.3
C4—C5—C16i 123.29 (14) H57A—C57—H57B 108.6
C4—C5—C51 118.72 (14) C57—C58—C59 111.63 (14)
C16i—C5—C51 117.82 (14) C57—C58—H58A 109.3
N24—C16—C5i 125.69 (15) C59—C58—H58A 109.3
N24—C16—C17 110.71 (14) C57—C58—H58B 109.3
C5i—C16—C17 123.59 (14) C59—C58—H58B 109.3
C18—C17—C16 106.36 (14) H58A—C58—H58B 108.0
C18—C17—H17A 126.8 C510—C59—C58 113.42 (14)
C16—C17—H17A 126.8 C510—C59—H59A 108.9
C17—C18—C19 106.69 (15) C58—C59—H59A 108.9
C17—C18—H18A 126.7 C510—C59—H59B 108.9
C19—C18—H18A 126.7 C58—C59—H59B 108.9
N24—C19—C20 126.46 (14) H59A—C59—H59B 107.7
N24—C19—C18 111.07 (13) C59—C510—C511 113.04 (14)
C20—C19—C18 122.44 (15) C59—C510—H51A 109.0
C1—C20—C19 128.88 (15) C511—C510—H51A 109.0
C1—C20—H20A 115.6 C59—C510—H51B 109.0
C19—C20—H20A 115.6 C511—C510—H51B 109.0
C52—C51—C56 117.34 (14) H51A—C510—H51B 107.8
C52—C51—C5 123.54 (14) C510—C511—H51C 109.5
C56—C51—C5 119.12 (15) C510—C511—H51D 109.5
C53—C52—C51 121.78 (15) H51C—C511—H51D 109.5
C53—C52—H52A 119.1 C510—C511—H51E 109.5
C51—C52—H52A 119.1 H51C—C511—H51E 109.5
C52—C53—C54 119.38 (16) H51D—C511—H51E 109.5
C52—C53—H53A 120.3
C4—N21—C1—C20 174.18 (15) C2—C1—C20—C19 176.51 (16)
C4—N21—C1—C2 −2.51 (18) N24—C19—C20—C1 0.4 (3)
N21—C1—C2—C3 1.54 (18) C18—C19—C20—C1 178.43 (16)
C20—C1—C2—C3 −175.14 (16) C4—C5—C51—C52 63.4 (2)
C1—C2—C3—C4 −0.05 (19) C16i—C5—C51—C52 −121.15 (18)
C1—N21—C4—C5 −174.17 (15) C4—C5—C51—C56 −116.84 (18)
C1—N21—C4—C3 2.48 (18) C16i—C5—C51—C56 58.6 (2)
C2—C3—C4—N21 −1.45 (18) C56—C51—C52—C53 −0.7 (2)
C2—C3—C4—C5 175.01 (16) C5—C51—C52—C53 179.07 (15)
N21—C4—C5—C16i −2.8 (3) C51—C52—C53—C54 0.0 (2)
C3—C4—C5—C16i −178.73 (16) C52—C53—C54—O1 −179.13 (15)
N21—C4—C5—C51 172.32 (14) C52—C53—C54—C55 0.5 (2)
C3—C4—C5—C51 −3.6 (3) O1—C54—C55—C56 179.34 (14)
C19—N24—C16—C5i 179.15 (15) C53—C54—C55—C56 −0.4 (2)
C19—N24—C16—C17 0.37 (17) C54—C55—C56—C51 −0.4 (2)
N24—C16—C17—C18 0.14 (18) C52—C51—C56—C55 0.9 (2)
C5i—C16—C17—C18 −178.68 (15) C5—C51—C56—C55 −178.90 (15)
C16—C17—C18—C19 −0.56 (18) C55—C54—O1—C57 −175.16 (14)
C16—N24—C19—C20 177.47 (16) C53—C54—O1—C57 4.5 (2)
C16—N24—C19—C18 −0.72 (17) C54—O1—C57—C58 174.70 (13)
C17—C18—C19—N24 0.84 (19) O1—C57—C58—C59 172.84 (13)
C17—C18—C19—C20 −177.45 (15) C57—C58—C59—C510 −170.19 (15)
N21—C1—C20—C19 0.5 (3) C58—C59—C510—C511 −177.21 (15)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N21—H21···N24 0.88 2.50 3.033 (2) 119
N21—H21···N24i 0.88 2.22 2.804 (2) 123

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2552).

References

  1. Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1–70.
  3. Senge, M. O. (2006). Chem. Commun. pp. 243–256. [DOI] [PubMed]
  4. Senge, M. O., Medforth, C. J., Forsyth, T. P., Lee, D. A., Olmstead, M. M., Jentzen, W., Pandey, R. K., Shelnutt, J. A. & Smith, K. M. (1997). Inorg. Chem. 36, 1149–1163. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). Tetrahedron, 61, 5535–5564.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 2R. DOI: 10.1107/S160053681301550X/zl2552sup1.cif

e-69-o1048-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681301550X/zl2552Isup2.hkl

e-69-o1048-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES