Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jun 8;69(Pt 7):o1053–o1054. doi: 10.1107/S1600536813014530

rac-4-(4-Chloro­phen­yl)-2-methyl­amino-3-nitro-5,6,7,8-tetra­hydro-4H-chromen-5-one

P Narayanan a, Jayabal Kamalraja b, Paramasivam T Perumal b, K Sethusankar a,*
PMCID: PMC3772485  PMID: 24046628

Abstract

The title compound, C16H15ClN2O4, contains a chiral centre and crystallizes as a racemate. The methyl­ene group β-positioned to the carbonyl group is partially (21%) disordered. It flips to the opposite sides of the corresponding six-membered carbocycle by −0.304 (3) and 0.197 (11) Å, producing alternative envelope conformations. The planes of the pyran and chloro­phenyl rings form a dihedral angle of 86.25 (9)°. The mol­ecular structure is characterized by an intra­molecular N—H⋯O inter­action, which generates an S(6) ring motif. The corresponding amino N atom deviates from the plane of the pyran ring by 0.1634 (19) Å. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming C(8) chains running parallel to the b-axis direction. The crystal structure also features C—H⋯π inter­actions.

Related literature  

For the uses and biological importance of chromene, see: Ercole et al. (2009); Geen et al. (1996) Khan et al. (2010); Raj et al. (2010). For related structures, see: Sun et al., (2012). For graph-set notation, see: Bernstein et al. (1995). graphic file with name e-69-o1053-scheme1.jpg

Experimental  

Crystal data  

  • C16H15ClN2O4

  • M r = 334.75

  • Monoclinic, Inline graphic

  • a = 8.0285 (4) Å

  • b = 10.8460 (5) Å

  • c = 18.2337 (9) Å

  • β = 94.067 (2)°

  • V = 1583.74 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.30 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.912, T max = 0.924

  • 11848 measured reflections

  • 2786 independent reflections

  • 2208 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.119

  • S = 1.09

  • 2786 reflections

  • 218 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813014530/ld2104sup1.cif

e-69-o1053-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014530/ld2104Isup2.hkl

e-69-o1053-Isup2.hkl (134KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014530/ld2104Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the pyran ring C7/C8/C13/O1/C14/C15.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.90 (2) 1.86 (2) 2.599 (2) 137 (2)
C2—H2⋯O4i 0.93 2.53 3.420 (3) 160
C10—H10ACg1ii 0.97 2.75 3.515 (2) 136
C16—H16BCg1iii 0.96 2.76 3.577 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

PN and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

Comment

Chromene derivatives are very important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen et al., 1996; Ercole et al., 2009). They exhibit a number of pharmacological activities such as anti-HIV, anti-inflammatory, anti-bacterial, anti-allergic, anti-cancer etc. (Khan et al., 2010, Raj et al., 2010). Against this backround, X-ray analysis of the title compound has been carried out to study its structural aspects.

X-ray analysis confirms the molecular structure and atom connectivity. The molecular structure is stabilized by intramolecular N2—H2A···O3 interaction, which generates S(6) ring motif as illustrated in Fig. 1. The methelene group carbon atom C11 of the chromene moiety is disordered over two positions, with an occupancy factor of 0.787 (5):0.213 (5). The pyrane ring (C7/C8/C13/C14/C15/O1) is almost orthogonal to the chlorophenyl ring (C1–C6), with a dihedral angle of 86.25 (9)° between their mean planes.

The pyrane ring is almost coplanar with the least-square planes of the nitro and methylene groups, making dihedral angles of 5.19 (14) and 5.01 (16)°, with them, respectively.

The six-membered carbocyclic rings (C8/C9/C10/C11/C12/C13) and (C8/C9/C10/C11'/C12/C13) of the chromene moiety adopt envelope conformations on the atoms C11 and C11', with puckering paramaters: Q2 = 0.366 (3) Å, Q3 = 0.229 (3) Å and φ2 = 178.1 (2)°, and Q2 = 0.211 (7) Å, Q3 = -0.185 (5) Å and φ2 = 3.1 (2)°, respectively. Also, the atoms C11 and C11' deviate from their respective mean planes of the rest of the ring atoms by -0.304 (3) and 0.197 (11) Å, respectively. The amine group nitrogen atom N2 deviates by 0.1634 (19) Å from the mean plane of the pyran ring. The chlorine atom Cl1 deviates from the phenyl ring (C1–C6) by 0.0571 (9) Å. The title compound exihibits structural similarities with an already reported related structure (Sun et al., 2012).

In the crystal, the molecules are linked via intermolecular C2—H2···O4i hydrogen-bond interaction, which generates C(8) chains running parallel to b axis (Bernstein et al.,1995). The crystal structure is further stabilized by C10—H10A···Cg1ii and C16—H16B···Cg1iii intermolecular interactions, where Cg1 is the center of gravity of the pyran ring (C7/C8/C13/O1/C14/C15). The symmetry codes: (i) 3/2 - x, 1/2 + y, 1/2 - z (ii) 2 - x, 2 - y, -z (iii) 1 - x, 1 - y, -z. The packing view of the title compound is shown in Fig. 2.

Experimental

A solution of 4-chlorobenzaldehyde (0.14 g, 1.0 mmol), cyclic 1,3-dicarbonyl compound (1.0 mmol), NMSM (0.15 g, 1.0 mmol) and piperidine (0.2 equivalents) in EtOH (2 ml) was stirred for 3.5 h. After the reaction was complete as indicated by TLC, the product was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

Positions of the H atoms were localized from the difference electron-density maps and their distances were geometrically constrained. The H atoms of the amine group were constrained to distances of N—H = 0.901 (10) Å with Uiso(H) = 1.2Ueq(N). The H atoms bound to the C atoms were treated as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methelene, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methiene, and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares. The bond distances of the disordered components were restrained using standard similarity restraint SADI (SHELXL97; Sheldrick, 2008) with an s.u. of 0.01 Å. The atomic displacement parameters of the major and minor components were made similar using the constraint EADP.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. The intramolecular hydrogen bond is shown. The displacement ellipsoids are drawn at 30% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along c axis, showing C2—H2···O4i hydrogen bonds producing C(8) chains parallel to b axis. H atoms not involved in the hydrogen bonding have been excluded for clarity. The symmetry code: (i) 3/2 - x, 1/2 + y, 1/2 - z.

Crystal data

C16H15ClN2O4 F(000) = 696
Mr = 334.75 Dx = 1.404 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2208 reflections
a = 8.0285 (4) Å θ = 2.2–25.0°
b = 10.8460 (5) Å µ = 0.26 mm1
c = 18.2337 (9) Å T = 296 K
β = 94.067 (2)° Block, colourless
V = 1583.74 (13) Å3 0.35 × 0.30 × 0.30 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 2786 independent reflections
Radiation source: fine-focus sealed tube 2208 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→8
Tmin = 0.912, Tmax = 0.924 k = −12→12
11848 measured reflections l = −15→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.9511P] where P = (Fo2 + 2Fc2)/3
2786 reflections (Δ/σ)max = 0.002
218 parameters Δρmax = 0.32 e Å3
4 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.8013 (3) 0.7871 (2) 0.15451 (11) 0.0393 (5)
H1 0.8934 0.7510 0.1798 0.047*
C2 0.7070 (3) 0.8723 (2) 0.19018 (12) 0.0440 (5)
H2 0.7358 0.8944 0.2387 0.053*
C3 0.5699 (3) 0.9234 (2) 0.15224 (13) 0.0443 (5)
C4 0.5244 (3) 0.8923 (2) 0.08060 (13) 0.0426 (5)
H4 0.4302 0.9271 0.0561 0.051*
C5 0.6215 (2) 0.80814 (19) 0.04556 (11) 0.0359 (5)
H5 0.5927 0.7870 −0.0031 0.043*
C6 0.7614 (2) 0.75474 (18) 0.08203 (11) 0.0321 (4)
C7 0.8702 (2) 0.66430 (18) 0.04219 (11) 0.0333 (5)
H7 0.9648 0.6402 0.0761 0.040*
C8 0.9376 (2) 0.72565 (18) −0.02368 (11) 0.0340 (5)
C9 1.0653 (3) 0.8231 (2) −0.01071 (13) 0.0408 (5)
C10 1.1262 (3) 0.8872 (2) −0.07623 (15) 0.0568 (7)
H10A 1.1514 0.9722 −0.0631 0.068* 0.787 (5)
H10B 1.2293 0.8485 −0.0888 0.068* 0.787 (5)
H10C 1.0732 0.9676 −0.0794 0.068* 0.213 (5)
H10D 1.2450 0.9012 −0.0664 0.068* 0.213 (5)
C11 1.0072 (4) 0.8859 (3) −0.14166 (18) 0.0539 (9) 0.787 (5)
H11A 1.0619 0.9181 −0.1834 0.065* 0.787 (5)
H11B 0.9140 0.9397 −0.1331 0.065* 0.787 (5)
C11' 1.1015 (14) 0.8288 (11) −0.1501 (5) 0.0539 (9) 0.213 (5)
H11C 1.1949 0.7744 −0.1572 0.065* 0.213 (5)
H11D 1.1009 0.8925 −0.1874 0.065* 0.213 (5)
C12 0.9406 (3) 0.7556 (2) −0.16027 (13) 0.0488 (6)
H12A 0.8457 0.7608 −0.1962 0.059* 0.787 (5)
H12B 1.0268 0.7070 −0.1813 0.059* 0.787 (5)
H12C 0.9528 0.6925 −0.1972 0.059* 0.213 (5)
H12D 0.8519 0.8105 −0.1787 0.059* 0.213 (5)
C13 0.8893 (3) 0.69552 (19) −0.09213 (11) 0.0360 (5)
C14 0.7355 (2) 0.52214 (18) −0.05564 (11) 0.0344 (5)
C15 0.7772 (2) 0.54932 (18) 0.01722 (11) 0.0329 (5)
C16 0.6240 (4) 0.3970 (3) −0.15987 (14) 0.0699 (9)
H16A 0.5475 0.4562 −0.1823 0.105*
H16B 0.5771 0.3158 −0.1655 0.105*
H16C 0.7275 0.4004 −0.1831 0.105*
N1 0.7340 (2) 0.46946 (16) 0.07175 (10) 0.0408 (4)
N2 0.6539 (2) 0.42483 (17) −0.08263 (10) 0.0442 (5)
O1 0.77966 (19) 0.59923 (14) −0.10937 (8) 0.0436 (4)
O2 1.1201 (2) 0.84650 (17) 0.05139 (10) 0.0574 (5)
O3 0.6480 (2) 0.37405 (14) 0.05646 (9) 0.0529 (4)
O4 0.7809 (3) 0.49375 (16) 0.13643 (9) 0.0593 (5)
Cl1 0.45353 (11) 1.03329 (9) 0.19602 (5) 0.0864 (3)
H2A 0.621 (3) 0.377 (2) −0.0458 (10) 0.058 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0421 (12) 0.0421 (12) 0.0334 (11) −0.0032 (10) 0.0014 (9) 0.0005 (9)
C2 0.0523 (13) 0.0468 (13) 0.0341 (12) −0.0107 (11) 0.0099 (10) −0.0078 (10)
C3 0.0439 (12) 0.0403 (12) 0.0510 (14) −0.0058 (10) 0.0186 (10) −0.0095 (11)
C4 0.0342 (11) 0.0407 (12) 0.0533 (14) −0.0023 (9) 0.0048 (10) 0.0005 (10)
C5 0.0362 (11) 0.0359 (11) 0.0354 (11) −0.0074 (9) 0.0023 (8) −0.0038 (9)
C6 0.0334 (10) 0.0292 (10) 0.0342 (11) −0.0072 (8) 0.0056 (8) −0.0008 (8)
C7 0.0329 (10) 0.0325 (11) 0.0342 (11) −0.0016 (8) −0.0002 (8) 0.0004 (9)
C8 0.0325 (10) 0.0301 (11) 0.0401 (12) −0.0018 (8) 0.0065 (8) −0.0025 (9)
C9 0.0336 (11) 0.0371 (12) 0.0520 (14) −0.0031 (9) 0.0066 (10) −0.0091 (10)
C10 0.0599 (15) 0.0415 (14) 0.0707 (17) −0.0169 (12) 0.0173 (13) −0.0015 (12)
C11 0.062 (2) 0.0432 (19) 0.0571 (19) −0.0125 (14) 0.0095 (16) 0.0095 (15)
C11' 0.062 (2) 0.0432 (19) 0.0571 (19) −0.0125 (14) 0.0095 (16) 0.0095 (15)
C12 0.0615 (15) 0.0446 (13) 0.0417 (13) −0.0119 (11) 0.0136 (11) 0.0021 (10)
C13 0.0379 (11) 0.0303 (11) 0.0405 (12) −0.0044 (9) 0.0084 (9) −0.0011 (9)
C14 0.0345 (10) 0.0297 (10) 0.0399 (12) −0.0027 (8) 0.0081 (8) −0.0001 (9)
C15 0.0360 (10) 0.0271 (10) 0.0358 (11) −0.0005 (8) 0.0044 (8) 0.0014 (8)
C16 0.087 (2) 0.076 (2) 0.0483 (16) −0.0372 (16) 0.0119 (14) −0.0187 (14)
N1 0.0514 (11) 0.0311 (10) 0.0404 (11) 0.0013 (8) 0.0063 (8) 0.0047 (8)
N2 0.0542 (11) 0.0378 (11) 0.0416 (11) −0.0144 (9) 0.0102 (9) −0.0070 (9)
O1 0.0555 (9) 0.0415 (9) 0.0341 (8) −0.0178 (7) 0.0051 (7) −0.0012 (7)
O2 0.0482 (10) 0.0634 (11) 0.0606 (12) −0.0179 (8) 0.0035 (8) −0.0148 (9)
O3 0.0695 (11) 0.0331 (9) 0.0572 (11) −0.0129 (8) 0.0109 (8) 0.0050 (7)
O4 0.0923 (14) 0.0494 (10) 0.0353 (10) −0.0065 (9) −0.0008 (9) 0.0095 (8)
Cl1 0.0797 (5) 0.0901 (6) 0.0916 (6) 0.0240 (4) 0.0224 (4) −0.0350 (5)

Geometric parameters (Å, º)

C1—C6 1.383 (3) C10—H10D 0.9700
C1—C2 1.386 (3) C11—C12 1.540 (4)
C1—H1 0.9300 C11—H11A 0.9700
C2—C3 1.375 (3) C11—H11B 0.9700
C2—H2 0.9300 C11'—C12 1.516 (8)
C3—C4 1.373 (3) C11'—H11C 0.9700
C3—Cl1 1.742 (2) C11'—H11D 0.9700
C4—C5 1.386 (3) C12—C13 1.487 (3)
C4—H4 0.9300 C12—H12A 0.9700
C5—C6 1.390 (3) C12—H12B 0.9700
C5—H5 0.9300 C12—H12C 0.9700
C6—C7 1.531 (3) C12—H12D 0.9700
C7—C8 1.507 (3) C13—O1 1.387 (2)
C7—C15 1.507 (3) C14—N2 1.319 (3)
C7—H7 0.9800 C14—O1 1.354 (2)
C8—C13 1.321 (3) C14—C15 1.379 (3)
C8—C9 1.480 (3) C15—N1 1.381 (3)
C9—O2 1.212 (3) C16—N2 1.444 (3)
C9—C10 1.494 (3) C16—H16A 0.9600
C10—C11 1.475 (4) C16—H16B 0.9600
C10—C11' 1.489 (8) C16—H16C 0.9600
C10—H10A 0.9700 N1—O4 1.241 (2)
C10—H10B 0.9700 N1—O3 1.264 (2)
C10—H10C 0.9700 N2—H2A 0.901 (10)
C6—C1—C2 121.4 (2) C12—C11—H11A 109.1
C6—C1—H1 119.3 C10—C11—H11B 109.1
C2—C1—H1 119.3 C12—C11—H11B 109.1
C3—C2—C1 118.5 (2) H11A—C11—H11B 107.8
C3—C2—H2 120.7 C10—C11'—C12 113.0 (6)
C1—C2—H2 120.7 C10—C11'—H11C 109.0
C4—C3—C2 122.0 (2) C12—C11'—H11C 109.0
C4—C3—Cl1 119.25 (19) C10—C11'—H11D 109.0
C2—C3—Cl1 118.77 (18) C12—C11'—H11D 109.0
C3—C4—C5 118.7 (2) H11C—C11'—H11D 107.8
C3—C4—H4 120.7 C13—C12—C11' 114.3 (4)
C5—C4—H4 120.7 C13—C12—C11 109.3 (2)
C4—C5—C6 121.05 (19) C13—C12—H12A 109.8
C4—C5—H5 119.5 C11'—C12—H12A 132.3
C6—C5—H5 119.5 C11—C12—H12A 109.8
C1—C6—C5 118.42 (19) C13—C12—H12B 109.8
C1—C6—C7 120.98 (18) C11'—C12—H12B 72.9
C5—C6—C7 120.58 (17) C11—C12—H12B 109.8
C8—C7—C15 108.83 (16) H12A—C12—H12B 108.3
C8—C7—C6 110.16 (16) C13—C12—H12C 108.6
C15—C7—C6 112.73 (16) C11'—C12—H12C 109.1
C8—C7—H7 108.3 C11—C12—H12C 138.6
C15—C7—H7 108.3 H12A—C12—H12C 71.7
C6—C7—H7 108.3 C13—C12—H12D 108.6
C13—C8—C9 118.77 (19) C11'—C12—H12D 108.6
C13—C8—C7 123.07 (18) C11—C12—H12D 75.4
C9—C8—C7 118.15 (18) H12B—C12—H12D 136.4
O2—C9—C8 120.0 (2) H12C—C12—H12D 107.5
O2—C9—C10 122.1 (2) C8—C13—O1 122.63 (18)
C8—C9—C10 117.8 (2) C8—C13—C12 126.9 (2)
C11—C10—C9 114.4 (2) O1—C13—C12 110.45 (18)
C11'—C10—C9 119.7 (4) N2—C14—O1 111.88 (18)
C11—C10—H10A 108.7 N2—C14—C15 127.66 (19)
C11'—C10—H10A 129.7 O1—C14—C15 120.45 (18)
C9—C10—H10A 108.7 C14—C15—N1 120.21 (18)
C11—C10—H10B 108.7 C14—C15—C7 123.32 (18)
C11'—C10—H10B 70.3 N1—C15—C7 116.47 (17)
C9—C10—H10B 108.7 N2—C16—H16A 109.5
H10A—C10—H10B 107.6 N2—C16—H16B 109.5
C11—C10—H10C 72.8 H16A—C16—H16B 109.5
C11'—C10—H10C 107.4 N2—C16—H16C 109.5
C9—C10—H10C 107.4 H16A—C16—H16C 109.5
H10B—C10—H10C 138.8 H16B—C16—H16C 109.5
C11—C10—H10D 136.3 O4—N1—O3 120.52 (18)
C11'—C10—H10D 107.4 O4—N1—C15 118.43 (18)
C9—C10—H10D 107.4 O3—N1—C15 121.05 (18)
H10A—C10—H10D 67.7 C14—N2—C16 125.1 (2)
H10C—C10—H10D 106.9 C14—N2—H2A 110.2 (17)
C10—C11—C12 112.5 (2) C16—N2—H2A 124.7 (17)
C10—C11—H11A 109.1 C14—O1—C13 119.69 (16)
C6—C1—C2—C3 0.9 (3) C10—C11'—C12—C13 −33.1 (11)
C1—C2—C3—C4 0.1 (3) C10—C11'—C12—C11 57.6 (6)
C1—C2—C3—Cl1 −178.49 (17) C10—C11—C12—C13 46.9 (3)
C2—C3—C4—C5 −0.9 (3) C10—C11—C12—C11' −58.2 (6)
Cl1—C3—C4—C5 177.67 (16) C9—C8—C13—O1 175.11 (18)
C3—C4—C5—C6 0.7 (3) C7—C8—C13—O1 −4.1 (3)
C2—C1—C6—C5 −1.1 (3) C9—C8—C13—C12 −4.8 (3)
C2—C1—C6—C7 177.64 (19) C7—C8—C13—C12 176.0 (2)
C4—C5—C6—C1 0.3 (3) C11'—C12—C13—C8 20.5 (7)
C4—C5—C6—C7 −178.48 (18) C11—C12—C13—C8 −20.3 (3)
C1—C6—C7—C8 −119.8 (2) C11'—C12—C13—O1 −159.3 (6)
C5—C6—C7—C8 58.9 (2) C11—C12—C13—O1 159.8 (2)
C1—C6—C7—C15 118.4 (2) N2—C14—C15—N1 0.5 (3)
C5—C6—C7—C15 −62.8 (2) O1—C14—C15—N1 −179.05 (18)
C15—C7—C8—C13 13.3 (3) N2—C14—C15—C7 −179.6 (2)
C6—C7—C8—C13 −110.8 (2) O1—C14—C15—C7 0.9 (3)
C15—C7—C8—C9 −166.00 (17) C8—C7—C15—C14 −11.7 (3)
C6—C7—C8—C9 69.9 (2) C6—C7—C15—C14 110.8 (2)
C13—C8—C9—O2 −174.9 (2) C8—C7—C15—N1 168.27 (17)
C7—C8—C9—O2 4.4 (3) C6—C7—C15—N1 −69.2 (2)
C13—C8—C9—C10 3.3 (3) C14—C15—N1—O4 176.39 (19)
C7—C8—C9—C10 −177.4 (2) C7—C15—N1—O4 −3.6 (3)
O2—C9—C10—C11 −156.9 (3) C14—C15—N1—O3 −3.9 (3)
C8—C9—C10—C11 24.9 (3) C7—C15—N1—O3 176.11 (18)
O2—C9—C10—C11' 159.0 (6) O1—C14—N2—C16 4.2 (3)
C8—C9—C10—C11' −19.1 (7) C15—C14—N2—C16 −175.4 (2)
C11'—C10—C11—C12 57.4 (6) N2—C14—O1—C13 −169.49 (18)
C9—C10—C11—C12 −50.4 (4) C15—C14—O1—C13 10.1 (3)
C11—C10—C11'—C12 −59.2 (7) C8—C13—O1—C14 −8.7 (3)
C9—C10—C11'—C12 33.9 (11) C12—C13—O1—C14 171.21 (19)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the pyran ring C7/C8/C13/O1/C14/C15.

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.90 (2) 1.86 (2) 2.599 (2) 137 (2)
C2—H2···O4i 0.93 2.53 3.420 (3) 160
C10—H10A···Cg1ii 0.97 2.75 3.515 (2) 136
C16—H16B···Cg1iii 0.96 2.76 3.577 (3) 144

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2104).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
  6. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  7. Raj, T., Bhatia, R. K., Kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). Eur. J. Med. Chem. 45, 790–794. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Sun, R., Wang, K., Wu, D.-D., Huang, W. & Ou, Y.-B. (2012). Acta Cryst. E68, o824. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813014530/ld2104sup1.cif

e-69-o1053-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813014530/ld2104Isup2.hkl

e-69-o1053-Isup2.hkl (134KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813014530/ld2104Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES