Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 May;21(5):862–866. doi: 10.1128/am.21.5.862-866.1971

Effect of Sodium Chloride and pH on Enterotoxin C Production

Constantin Genigeorgis 1, Mohamed S Foda 1, Antony Mantis 1,1, Walter W Sadler 1
PMCID: PMC377298  PMID: 5574320

Abstract

Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts.

Full text

PDF
862

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergdoll M. S., Borja C. R., Avena R. M. Identification of a new enterotoxin as enterotoxin C. J Bacteriol. 1965 Nov;90(5):1481–1485. doi: 10.1128/jb.90.5.1481-1485.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borja C. R., Bergdoll M. S. Purification and partial characterization of enterotoxin C produced by Staphylococcus aureus strain 137. Biochemistry. 1967 May;6(5):1467–1473. doi: 10.1021/bi00857a032. [DOI] [PubMed] [Google Scholar]
  3. Casman E. P., Bennett R. W., Dorsey A. E., Stone J. E. The micro-slide gel double diffusion test for the detection and assay of staphylococcal enterotoxins. Health Lab Sci. 1969 Oct;6(4):185–198. [PubMed] [Google Scholar]
  4. Genigeorgis C., Sadler W. W. Effect of sodium chloride and pH on enterotoxin B production. J Bacteriol. 1966 Nov;92(5):1383–1387. doi: 10.1128/jb.92.5.1383-1387.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HALL H. E., ANGELOTTI R., LEWIS K. H. DETECTION OF THE STAPHYLOCOCCAL ENTEROTOXINS IN FOOD. Health Lab Sci. 1965 Jul;2:179–191. [PubMed] [Google Scholar]
  6. HUNT G. A., GOUREVITCH A., LEIN J. Preservation of cultures by drying on porcelain beads. J Bacteriol. 1958 Oct;76(4):453–454. doi: 10.1128/jb.76.4.453-454.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. IANDOLO J. J., ORDAL Z. J., WITTER L. D. THE EFFECT OF INCUBATION TEMPERATURE AND CONTROLLED PH ON THE GROWTH OF STAPHYLOCOCCUS AUREUS MF 31 AT VARIOUS CONCENTRATIONS OF NACL. Can J Microbiol. 1964 Oct;10:808–811. doi: 10.1139/m64-104. [DOI] [PubMed] [Google Scholar]
  8. Kato E., Khan M., Kujovich L., Bergdoll M. S. Production of enterotoxin a. Appl Microbiol. 1966 Nov;14(6):966–972. doi: 10.1128/am.14.6.966-972.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Markus Z., Silverman G. J. Enterotoxin B synthesis by replicating and nonreplicating cells of Staphylococcus aureus. J Bacteriol. 1969 Feb;97(2):506–512. doi: 10.1128/jb.97.2.506-512.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McLean R. A., Lilly H. D., Alford J. A. Effects of meat-curing salts and temperature on production of staphylococcal enterotoxin B. J Bacteriol. 1968 Apr;95(4):1207–1211. doi: 10.1128/jb.95.4.1207-1211.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reiser R. F., Weiss K. F. Production of staphylococcal enterotoxins A, B, and C in various media. Appl Microbiol. 1969 Dec;18(6):1041–1043. doi: 10.1128/am.18.6.1041-1043.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SUGIYAMA H., BERGDOLL M. S., DACK G. M. In vitro studies on staphylococcal enterotoxin production. J Bacteriol. 1960 Aug;80:265–270. doi: 10.1128/jb.80.2.265-270.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stark R. L., Middaugh P. R. Immunofluorescent detection of enterotoxin B in food and a culture medium. Appl Microbiol. 1969 Oct;18(4):631–635. doi: 10.1128/am.18.4.631-635.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES