Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Jun;21(6):1058–1063. doi: 10.1128/am.21.6.1058-1063.1971

Resistance of Pseudomonas to Quaternary Ammonium Compounds

II. Cross-Resistance Characteristics of a Mutant of Pseudomonas aeruginosa

Frank W Adair 1, Sam G Geftic 1, Justus Gelzer 1
PMCID: PMC377343  PMID: 4998348

Abstract

Tube dilution experiments showed that benzalkonium chloride (BC)-resistant mutants of Pseudomonas aeruginosa grown in the presence of 1,000 μg of BC per ml were at least 20 times more sensitive to polymyxin B and colistin sulfate than the BC-sensitive (BCS) parent strain. BCS cells selected for resistance to 500 μg of polymyxin B per ml remained sensitive to BC. There was little difference in the amount of carbenicillin, gentamicin sulfate, or rifampin needed to prevent growth of either the BCS or BC-resistant (BCR) strains. Growth of BCR cells was inhibited by ethylenediaminetetraacetate at a concentration of 400 μg/ml or less, whereas the BCS strain grew at ethylenediaminetetraacetate levels of 10,000 μg/ml. Phenylmercuric acetate and thimerosal inhibited growth of BCR and BCS cells at concentrations of 10 μg/ml or less. BCR cells were cross-resistant to >1,000 μg/ml concentrations of five other quaternary ammonium compounds, including three with C16 alkyls and two with alkyl groups of shorter length. The BCS strain was also resistant to >1,000 μg/ml concentrations of the three quaternary ammonium compounds with C16 alkyl groups but, in addition to BC, was inhibited by 200 μg/ml levels or less of the two quaternary ammonium compounds containing alkyl groups of less than 16 carbon atoms.

Full text

PDF
1058

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair F. W., Geftic S. G., Gelzer J. Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl Microbiol. 1969 Sep;18(3):299–302. doi: 10.1128/am.18.3.299-302.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassett D. C., Stokes K. J., Thomas W. R. Wound infection with Pseudomonas multivorans. A water-borne contaminant of disinfectant solutions. Lancet. 1970 Jun 6;1(7658):1188–1191. doi: 10.1016/s0140-6736(70)91783-6. [DOI] [PubMed] [Google Scholar]
  3. Brown M. R., Melling J. Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. J Gen Microbiol. 1969 Dec;59(2):263–274. doi: 10.1099/00221287-59-2-263. [DOI] [PubMed] [Google Scholar]
  4. Brown M. R., Richards R. M. Effect of ethylenediamine tetraacetate on the resistance of Pseudomonas aeruginosa to antibacterial agents. Nature. 1965 Sep 25;207(5004):1391–1393. doi: 10.1038/2071391a0. [DOI] [PubMed] [Google Scholar]
  5. Brown M. R., Watkins W. M. Low magnesium and phospholipid content of cell wals of Pseudomonas aeruginosa resistant to polymyxin. Nature. 1970 Sep 26;227(5265):1360–1361. doi: 10.1038/2271360a0. [DOI] [PubMed] [Google Scholar]
  6. CHAPLIN C. E. Bacterial resistance to quaternary ammonium disinfectants. J Bacteriol. 1952 Apr;63(4):453–458. doi: 10.1128/jb.63.4.453-458.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox S. T., Jr, Eagon R. G. Action of ethylenediaminetetraacetic acid, tris(hydroxymethyl)-aminomethane, and lysozyme on cell walls of Pseudomonas aeruginosa. Can J Microbiol. 1968 Aug;14(8):913–922. doi: 10.1139/m68-153. [DOI] [PubMed] [Google Scholar]
  8. Dunnick J. K., O'Leary W. M. Correlation of bacteria lipid composition with antibiotic resistance. J Bacteriol. 1970 Mar;101(3):892–900. doi: 10.1128/jb.101.3.892-900.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray G. W., Wilkinson S. G. The effect of ethylenediaminetetra-acetic acid on the cell walls of some gram-negative bacteria. J Gen Microbiol. 1965 Jun;39(3):385–399. doi: 10.1099/00221287-39-3-385. [DOI] [PubMed] [Google Scholar]
  10. Hardy P. C., Ederer G. M., Matsen J. M. Contamination of commercially packaged urinary catheter kits with the pseudomonad EO-1. N Engl J Med. 1970 Jan 1;282(1):33–35. doi: 10.1056/NEJM197001012820108. [DOI] [PubMed] [Google Scholar]
  11. Hugo W. B. The mode of action of antibacterial agents. J Appl Bacteriol. 1967 Apr;30(1):17–50. doi: 10.1111/j.1365-2672.1967.tb00273.x. [DOI] [PubMed] [Google Scholar]
  12. KEOWN K. K., GILMAN R. A., BAILEY C. P. Open heart surgery; anesthesia and surgical experiences. J Am Med Assoc. 1957 Oct 19;165(7):781–787. doi: 10.1001/jama.1957.02980250015004. [DOI] [PubMed] [Google Scholar]
  13. Koike M., Iida K., Matsuo T. Electron microscopic studies on mode of action of polymyxin. J Bacteriol. 1969 Jan;97(1):448–452. doi: 10.1128/jb.97.1.448-452.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEE J. C., FIALKOW P. J. Benzalkonium chloride-source of hospital infection with gram-negative bacteria. JAMA. 1961 Sep 9;177:708–710. doi: 10.1001/jama.1961.73040360013012a. [DOI] [PubMed] [Google Scholar]
  15. MACGREGOR D. R., ELLIKER P. R. A comparison of some properties of strains of Pseudomonas aeruginosa sensitive and resistant to quaternary ammonium compounds. Can J Microbiol. 1958 Oct;4(5):499–503. doi: 10.1139/m58-054. [DOI] [PubMed] [Google Scholar]
  16. MALIZIA W. F., GANGAROSA E. J., GOLEY A. F. Benzalkonium chloride as a source of infection. N Engl J Med. 1960 Oct 20;263:800–802. doi: 10.1056/NEJM196010202631608. [DOI] [PubMed] [Google Scholar]
  17. McQUILLEN K. The bacterial surface. I. Effect of cetyl-trimethyl-ammonium bromide on the electrophoretic mobility of certain gram-positive bacteria. Biochim Biophys Acta. 1950 Jun;5(3/4):463–471. doi: 10.1016/0006-3002(50)90192-2. [DOI] [PubMed] [Google Scholar]
  18. NEWTON B. A. The properties and mode of action of the polymyxins. Bacteriol Rev. 1956 Mar;20(1):14–27. doi: 10.1128/br.20.1.14-27.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nordström K., Burman L. G., Eriksson-Grennberg K. G. Resistance of Escherichia coli to penicillins. 8. Physiology of a class II ampicillin-resistant mutant. J Bacteriol. 1970 Mar;101(3):659–668. doi: 10.1128/jb.101.3.659-668.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PLOTKIN S. A., AUSTRIAN R. Bacteremia caused by Pseudomonas sp. following the use of materials stored in solutions of a cationic surface-active agent. Am J Med Sci. 1958 Jun;235(6):621–627. doi: 10.1097/00000441-195806000-00001. [DOI] [PubMed] [Google Scholar]
  21. Phillips I., Eykyn S., Curtis M. A., Snell J. J. Pseudomonas cepacia (multivorans) septicaemia in an intensive-care unit. Lancet. 1971 Feb 20;1(7695):375–377. doi: 10.1016/s0140-6736(71)92212-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES